Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Antimicrob Agents Chemother ; : e0142923, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742895

RESUMEN

Highly encapsulated hypervirulent Klebsiella pneumoniae (hvKp) causes severe infections. Bacteriophage therapy, an antibiotic alternative, effectively treats bacterial infections. Phage φFK1979 encoding polysaccharide depolymerases can target and disarm the capsule of hvKp FK1979, showing promise against FK1979 infection. Resistant strains induced by φFK1979 are possibly eliminated by host immunity and new phage phiR3 targeting them. We constructed varied immunocompromised FK1979 infection mouse models to assess the therapy efficacy of φFK1979 alone or in combination with phiR3. Survival rates, bacterial loads, histopathology, inflammation, and immune cell distribution of mice were studied. Prompt and adequate administration of φFK1979, rather than phiR3, significantly improved survival rates in mice with different immune statuses. However, immunocompromised mice showed lower efficacy due to reduced tolerance to low-virulence φFK1979-resistant bacteria compared to immunocompetent mice. Adding phiR3 sequentially greatly enhanced therapy efficacy for them, leading to increased survival rates and notable improvements in pathology and inflammation. Immunocompetent mice exhibited the most favorable response to φFK1979 monotherapy, as their immune system cleared φFK1979-resistant bacteria while avoiding a robust response to phiR3 combating φFK1979-resistant bacteria. This study revealed host immunity involvement in the outcome of phage therapy against infections and introduced, for the first time, personalized phage therapy strategies for hvKp-infected mice with varying immune statuses.IMPORTANCEHypervirulent Klebsiella pneumoniae (hvKp), with high capsular polysaccharide production, can cause severe invasive infections. Capsule-targeting phage poses the potential to fight against hvKp. We previously elucidated that the capsule-targeting phage induces resistance in hvKp, while phage-resistant strains exhibit sensitivity to host innate immunity and new phages targeting them. This indicated that phage-resistant strains can be eliminated by the immune system in immunocompetent patients, whereas they may require treatment with phages targeting resistant bacteria in immunocompromised patients. HvKp can infect individuals with varying immune statuses, including both immunocompetent and immunocompromised/deficient patients. This study, for the first time, developed personalized phage therapy strategies for hvKp-infected mice with different immune statuses, optimizing phage therapy against hvKp infections. This research is expected to provide a theoretical foundation and novel insights for clinical phage therapy against hvKp infections, offering significant societal benefits and clinical value.

2.
BMC Microbiol ; 24(1): 207, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858621

RESUMEN

BACKGROUND: Quorum sensing (QS) is a cell density-based intercellular communication system that controls virulence gene expression and biofilm formation. In Pseudomonas aeruginosa (P. aeruginosa), the LasR system sits at the top of the QS hierarchy and coordinates the expression of a series of important traits. However, the role of lasR in phage infection remains unclear. This study aims to investigate the role of lasR QS in phage infection. METHODS: The P. aeruginosa phage was isolated from sewage, and its biological characteristics and whole genome were analyzed. The adsorption receptor was identified via a phage adsorption assay. Following lasR gene knockout, the adsorption rate and bactericidal activity of phage were analyzed. Finally, real-time quantitative polymerase chain reaction (RT-qPCR) was conducted to explore how lasR promoting phage infection. RESULTS: The lytic phage vB_Pae_PLY was isolated and lipopolysaccharide (LPS) was identified as its adsorption receptor. The adsorption rate and bactericidal activity of vB_Pae_PLY were reduced after lasR knockout. RT-qPCR results showed that the expression of galU, a key gene involved in LPS synthesis, was down-regulated, and several genes related to type IV pili (T4P) were also down-regulated in the lasR mutant PaΔlasR. CONCLUSIONS: The study showed that QS lasR may promote phage vB_Pae_PLY infection by involving in the synthesis of LPS and T4P. This study provides an example of QS in promoting phage infection and deepens the understanding of phage-bacteria interactions.


Asunto(s)
Proteínas Bacterianas , Pseudomonas aeruginosa , Percepción de Quorum , Transactivadores , Pseudomonas aeruginosa/virología , Pseudomonas aeruginosa/genética , Percepción de Quorum/genética , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fagos Pseudomonas/genética , Fagos Pseudomonas/fisiología , Aguas del Alcantarillado/virología , Aguas del Alcantarillado/microbiología , Regulación Bacteriana de la Expresión Génica , Lipopolisacáridos/metabolismo , Técnicas de Inactivación de Genes
3.
J Antimicrob Chemother ; 78(2): 466-477, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36575476

RESUMEN

BACKGROUND: Vancomycin and linezolid resistance among enterococci is an increasing problem due to a lack of alternative antibiotics. Early identification of vancomycin-resistant and linezolid-resistant strains can help prevent the spread of resistance to these antibiotics. Hence, early, rapid and accurate detection of vancomycin and linezolid resistance is critical. OBJECTIVES: The resazurin microplate method (RMM) was developed for detecting vancomycin and linezolid susceptibility among Enterococcus faecalis (E. faecalis) and Enterococcus faecium (E. faecium) clinical isolates, and its performance was further evaluated. METHODS: A total of 209 non-duplicate clinical isolates and three strains from the faeces of domestic animals, including 142 E. faecalis (71 linezolid non-susceptible and 71 linezolid susceptible) and 70 E. faecium (23 vancomycin non-susceptible, 23 vancomycin susceptible, 12 linezolid non-susceptible and 12 linezolid susceptible), were tested using RMM. RESULTS: The susceptibility of E. faecium to vancomycin was detected within 5 h, with high susceptibility (23/23) and specificity (23/23). The susceptibility of E. faecalis and E. faecium to linezolid was detected within 4 h, with specificities of 98.59% and 100% and susceptibilities of 94.37% and 58.33% for E. faecalis and E. faecium, respectively. CONCLUSIONS: RMM had a good positive predictive value for the detection of vancomycin-non-susceptible E. faecium and linezolid-non-susceptible E. faecalis. It thus has the potential to become an alternative method for the rapid screening of these resistant pathogens in clinical practice.


Asunto(s)
Enterococcus faecium , Infecciones por Bacterias Grampositivas , Animales , Vancomicina/farmacología , Linezolid/farmacología , Enterococcus faecalis , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Infecciones por Bacterias Grampositivas/diagnóstico
4.
BMC Microbiol ; 23(1): 256, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704976

RESUMEN

BACKGROUND: Chlorhexidine (CHG) is a disinfectant commonly used in hospitals. However, it has been reported that the excessive use of CHG can cause resistance in bacteria to this agent and even to other clinical antibiotics. Therefore, new methods are needed to alleviate the development of CHG tolerance and reduce its dosage. This study aimed to explore the synergistic effects of CHG in combination with bacteriophage against CHG-tolerant Pseudomonas aeruginosa (P. aeruginosa) and provide ideas for optimizing disinfection strategies in clinical environments as well as for the efficient use of disinfectants. METHODS: The CHG-tolerant P. aeruginosa strains were isolated from the First Affiliated Hospital of Wenzhou Medical University in China. The bacteriophage vB3530 was isolated from the sewage inlet of the hospital, and its genome was sequenced. Time-killing curve was used to determine the antibacterial effects of vB3530 and chlorohexidine gluconate (CHG). The phage sensitivity to 16 CHG-tolerant P. aeruginosa strains and PAO1 strain was detected using plaque assay. The emergence rate of resistant bacterial strains was detected to determine the development of phage-resistant and CHG-tolerant strains. Finally, the disinfection effects of the disinfectant and phage combination on the surface of the medical devices were preliminarily evaluated. RESULTS: The results showed that (1) CHG combined with bacteriophage vB3530 significantly inhibited the growth of CHG-resistant P. aeruginosa and reduced the bacterial colony forming units (CFUs) after 24 h. (2) The combination of CHG and bacteriophage inhibited the emergence of phage-resistant and CHG-tolerant strains. (3) The combination of CHG and bacteriophage significantly reduced the bacterial load on the surface of medical devices. CONCLUSIONS: In this study, the combination of bacteriophage vB3530 and CHG presented a combined inactivation effect to CHG-tolerant P. aeruginosa and reduced the emergence of strains resistant to CHG and phage. This study demonstrated the potential of bacteriophage as adjuvants to traditional disinfectants. The use of bacteriophage in combination with commercial disinfectants might be a promising method for controlling the spread of bacteria in hospitals.


Asunto(s)
Bacteriófagos , Desinfectantes , Humanos , Clorhexidina/farmacología , Pseudomonas aeruginosa , Desinfectantes/farmacología , Antibacterianos
5.
Microb Pathog ; 174: 105906, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36494020

RESUMEN

The bacteriophage vB8388 can lyse multi-drug resistant Klebsiella oxytoca strain FK-8388 and maintain stability in a wide range of temperatures (from 4 °C to 80 °C) and pHs (3-11). Bioinformatics analysis showed that vB8388 is a linear double-stranded DNA virus that is 39,750 long with 50.65% G + C content and 44 putative open reading frames (ORFs). Phage vB8388 belongs to the family Autographviridae and possesses a non-contractile tail. The latency period of vB8388 was approximately 20 min. The combination of phage vB8388 and gentamicin, amikacin, or tobramycin could effectively inhibit the growth of K. oxytoca strain FK-8388, with a decrease of more than 4 log units within 12 h in vitro. Phage vB8388 showed a strong synergistic effect with gentamicin that could enhance the anti-biofilm effect of vB8388. The phage + gentamicin combination also showed synergy in vivo in the larval infection model of Galleria mellonella. In conclusion, the findings of this study suggest the potential of phage + antibiotic combination therapy to be used as an alternative therapeutic approach for treating infectious diseases caused by multidrug-resistant bacteria.


Asunto(s)
Aminoglicósidos , Bacteriófagos , Animales , Aminoglicósidos/farmacología , Bacteriófagos/genética , Klebsiella oxytoca , Antibacterianos/farmacología , Gentamicinas/farmacología , Klebsiella pneumoniae
6.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37762115

RESUMEN

Combining pentamidine with Gram-positive-targeting antibiotics has been proven to be a promising strategy for treating infections from Gram-negative bacteria (GNB). However, which antibiotics pentamidine can and cannot synergize with and the reasons for the differences are unclear. This study aimed to identify the possible mechanisms for the differences in the synergy of pentamidine with rifampicin, linezolid, tetracycline, erythromycin, and vancomycin against GNB. Checkerboard assays were used to detect the synergy of pentamidine and the different antibiotics. To determine the mechanism of pentamidine, fluorescent labeling assays were used to measure membrane permeability, membrane potential, efflux pump activity, and reactive oxygen species (ROS); the LPS neutralization assay was used to evaluate the target site; and quantitative PCR was used to measure changes in efflux pump gene expression. Our results revealed that pentamidine strongly synergized with rifampicin, linezolid, and tetracycline and moderately synergized with erythromycin, but did not synergize with vancomycin against E. coli, K. pneumoniae, E. cloacae, and A. baumannii. Pentamidine increased the outer membrane permeability but did not demolish the outer and inner membranes, which exclusively permits the passage of hydrophobic, small-molecule antibiotics while hindering the entry of hydrophilic, large-molecule vancomycin. It dissipated the membrane proton motive force and inactivated the efflux pump, allowing the intracellular accumulation of antimicrobials that function as substrates of the efflux pump, such as linezolid. These processes resulted in metabolic perturbation and ROS production which ultimately was able to destroy the bacteria. These mechanisms of action of pentamidine on GNB indicate that it is prone to potentiating hydrophobic, small-molecule antibiotics, such as rifampicin, linezolid, and tetracycline, but not hydrophilic, large-molecule antibiotics like vancomycin against GNB. Collectively, our results highlight the importance of the physicochemical properties of antibiotics and the specific mechanisms of action of pentamidine for the synergy of pentamidine-antibiotic combinations. Pentamidine engages in various pathways in its interactions with GNB, but these mechanisms determine its specific synergistic effects with certain antibiotics against GNB. Pentamidine is a promising adjuvant, and we can optimize drug compatibility by considering its functional mechanisms.


Asunto(s)
Rifampin , Vancomicina , Linezolid/farmacología , Vancomicina/farmacología , Rifampin/farmacología , Pentamidina/farmacología , Escherichia coli , Especies Reactivas de Oxígeno , Antibacterianos/farmacología , Bacterias Gramnegativas , Tetraciclina/farmacología , Eritromicina
7.
J Clin Microbiol ; 60(9): e0000422, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35946948

RESUMEN

Ceftazidime-avibactam (CZA), a novel ß-lactam/ß-lactamase inhibitor combination, has good antibacterial activity against carbapenem-resistant Enterobacterales (CRE) producing class A and C and some class D carbapenemases, but in recent years, the emergence of CZA-resistant Enterobacterales bacteria is growing. Therefore, rapid, accurate, and timely detection of CZA is necessary for clinical anti-infection treatment. In this study, the rapid ResaCeftazidime-avibactam Enterobacterales NP test was developed; its principle is that metabolically active bacteria (CZA-resistant strains) can change resazurin-PrestoBlue, a viability colorant, from blue to purple or pink in the presence of CZA, whereas CZA-susceptible strains cannot. We used 178 Enterobacterales isolates to evaluate the performance of this test. This test allowed the susceptibility of Enterobacterales to CZA to be detected within 4.5 h with an overall performance of 96% category agreement (CA), 7% major errors (MEs), and 0% very major errors (VMEs). Performance for Escherichia coli included 100% CA and 0% MEs and VMEs. Performance for Klebsiella pneumoniae included 99% CA and 2% MEs and 0% VMEs. Performance for Enterobacter cloacae included 87% CA, 25% MEs, and 0% VMEs. Moreover, this test is both economical ($1.0106 per isolate) and convenient, as it only requires basic laboratory equipment. In a word, the rapid ResaCeftazidime-avibactam Enterobacterales NP test is rapid and feasible, which may provide certain backing for the rapid screening and timely treatment of CZA-resistant strains in the clinic.


Asunto(s)
Ceftazidima , Enterobacteriaceae , Inhibidores de beta-Lactamasas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Compuestos de Azabiciclo , Carbapenémicos , Ceftazidima/farmacología , Combinación de Medicamentos , Enterobacteriaceae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/uso terapéutico , beta-Lactamasas
8.
J Antimicrob Chemother ; 77(7): 1903-1911, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35474013

RESUMEN

BACKGROUND: The emergence and spread of carbapenem-resistant Klebsiella pneumoniae (CRKP) pose a threat to public health. Antimicrobial peptides provide a new treatment option for CRKP infections. OBJECTIVES: We studied antibacterial activities of WAM-1 against CRKP in vitro and in vivo and explored its possible mechanism. We verified safety and factors affecting antibacterial effect. Furthermore, anti-inflammatory effects were investigated. METHODS: We selected eight CRKP and eight carbapenem-susceptible K. pneumoniae to explore the antibacterial activity of WAM-1 by broth microdilution (BMD). The possible mechanism was investigated by alkaline phosphatase leakage and propidium iodide (PI). We evaluated safety of WAM-1 by cytotoxicity and haemolysis and effects of temperature and serum on the antibacterial activity. We investigated in vivo efficacy of WAM-1 by the Galleria mellonella infection model. We investigated the effect of WAM-1 on TNF-α. RESULTS: BMD showed that WAM-1 had a good antibacterial effect with MICs of 2-4 mg/L and MBCs of 4-8 mg/L. RT-qPCR showed that WAM-1 could inhibit the expression of TNF-α. The cytotoxicity and haemolysis test proved that WAM-1 had certain potential application in vivo. Alkaline phosphatase leakage and PI fluorescence showed that WAM-1 was highly likely to exert an antibacterial effect by destroying bacterial membrane. The G. mellonella infection model suggested that WAM-1 may have a good therapeutic effect in vivo. Temperature had little effect on the activity of WAM-1. Serum, however, reduced WAM-1 activity. CONCLUSIONS: WAM-1 has good antibacterial effect and potential anti-inflammatory effect on infection caused by CRKP.


Asunto(s)
Antibacterianos , Antiinflamatorios , Péptidos Antimicrobianos , Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Klebsiella , Fosfatasa Alcalina , Animales , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Péptidos Antimicrobianos/farmacología , Carbapenémicos/farmacología , Farmacorresistencia Bacteriana , Hemólisis , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Mariposas Nocturnas , Factor de Necrosis Tumoral alfa
9.
J Antimicrob Chemother ; 77(5): 1301-1305, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35165715

RESUMEN

OBJECTIVES: To investigate the antibacterial activity of the novel ß-lactamase inhibitor BLI-489 combined with imipenem or meropenem against diverse carbapenemase-producing carbapenem-resistant Enterobacterales (CRE) in vivo and in vitro. METHODS: Twenty-five CRE strains, including Klebsiella pneumoniae (n = 10), Escherichia coli (n = 6) and Enterobacter cloacae (n = 9), were used in chequerboard assays to evaluate the synergistic effect of BLI-489 combined with imipenem or meropenem. A cytotoxicity test was used to detect the toxicity of BLI-489 monotherapy or combination therapy. Three isolates producing class A, B and D carbapenemases, respectively, were selected to further confirm the synergistic effect in vitro by time-kill assays and in vivo by the Galleria mellonella infection model. RESULTS: Chequerboard assays demonstrated that BLI-489 combined with imipenem had a synergistic effect on 7/10, 7/9 and 5/6 of carbapenem-resistant K. pneumoniae, E. cloacae and E. coli, respectively, while BLI-489 and meropenem had a synergistic effect on 8/10, 9/9 and 6/6 of the isolates, respectively. No cytotoxicity was observed when BLI-489 was used alone or in combination with imipenem or meropenem at the test concentrations. In the time-kill assays, combination therapy had a synergistic effect on DC5114 carrying blaKPC-2, FK8401 carrying blaNDM-5 and CG996 carrying blaOXA-23. The synergistic effect in vivo was confirmed by the G. mellonella infection model. CONCLUSIONS: The novel ß-lactamase inhibitor BLI-489 possesses a synergistic effect against diverse carbapenemase-producing CRE combined with imipenem or meropenem.


Asunto(s)
Imipenem , Inhibidores de beta-Lactamasas , Antibacterianos/farmacología , Proteínas Bacterianas/farmacología , Carbapenémicos/farmacología , Escherichia coli , Imipenem/farmacología , Klebsiella pneumoniae , Lactamas , Meropenem/farmacología , Pruebas de Sensibilidad Microbiana , Monobactamas/farmacología , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/farmacología
10.
BMC Microbiol ; 22(1): 306, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36529724

RESUMEN

BACKGROUND: Pseudomonas aeruginosa (P. aeruginosa) has been majorly implicated in the infection of burns, wounds, skin, and respiratory tract. Colistin is considered the last line of defense against P. aeruginosa infections. However, colistin is becoming increasingly invalid in treating patients infected with colistin-resistant (COL-R) P. aeruginosa. As one of the disinfectants used for wound infections, acetic acid (AA) offers good antibacterial and antibiofilm activities against P. aeruginosa. This study investigated the effects of AA on COL-R P. aeruginosa in terms of its antibacterial, antibiofilm, and anti-virulence properties and the corresponding underlying mechanisms. RESULTS: The antimicrobial susceptibility and growth curve data revealed that 0.078% (v/v) AA exhibited good antibacterial activity against COL-R P. aeruginosa. Subinhibitory concentrations of AA were ineffective in inhibiting biofilm formation, but 4 × and 8 × of the minimum inhibitory concentration (MIC) was effective in removing the preformed biofilms in biofilm-eradication assays. The virulence results illustrated that AA inhibited COL-R P. aeruginosa swimming, swarming, twitching, and pyocyanin and elastase production. The analysis of the potential antibacterial mechanisms of AA on COL-R P. aeruginosa revealed that AA acted by increasing the outer and inner membrane permeability, polarizing the membrane potential, and decreasing the reduction potential in a concentration-dependent manner. The qRT-PCR results revealed that AA may inhibit the virulence of COL-R P. aeruginosa by inhibiting the expression of T3SS-related and QS-related genes. CONCLUSIONS: AA possesses antibacterial, antibiofilm, and anti-virulence properties that ultimately lead to the alteration of the bacterial membrane permeability, membrane potential, and reduction potential. Our findings indicated that AA is presently one of the effective treatment options for infections. A high concentration of AA (> 0.156% v/v) can be used to sterilize biofilm-prone surgical instruments, for hospital disinfection, and for treating the external wound, whereas a low concentration of AA (0.00975-0.039% v/v) may be used as an anti-virulence agent for adjuvant treatment of COL-R P. aeruginosa, thereby further improving the application value of AA in the treatment of infections.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Colistina/farmacología , Ácido Acético/farmacología , Antibacterianos/farmacología , Biopelículas , Pruebas de Sensibilidad Microbiana , Percepción de Quorum , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología
11.
Microb Pathog ; 171: 105722, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35985450

RESUMEN

BACKGROUND: The continued rise of Klebsiella pneumoniae resistance to antibiotics is precipitating a medical crisis. Bacteriophages have been hailed as one possible therapeutic option to enhance the efficacy of antibiotics. This study describes the genomic characterization and biological property of a new bacteriophage vB_1086 and its potential for phage therapy application against Klebsiella pneumoniae. METHODS: In our study, the double-layer agar plate method isolated a lytic bacteriophage named vB_1086. Besides, we analyzed its biological characteristics and genetic background. Then the antibacterial ability of the bacteriophage vB_1086 combined with antibiotics were analyzed by the combined checkerboard method. The impact on the formation of biofilms was analyzed by crystal violet staining method. RESULTS: vB_1086 is a lytic bacteriophage with stable biological characteristics and clear genetic background, showing good antibacterial activity in combination with ceftriaxone, and the combination of phage and meropenem can effectively inhibit the formation of biofilm. Besides, the combination of bacteriophage and antimicrobials can effectively alleviate the generation of bacterial resistance and reduce the dosage of antimicrobials. CONCLUSION: vB_1086 is a novel phage. To some extent, these results provide valuable information that phage vB_1086 can be combined with antibiotics to reduce the dosage of antimicrobials and alleviate the generation of bacterial resistance.


Asunto(s)
Infecciones Bacterianas , Bacteriófagos , Agar/farmacología , Antibacterianos/farmacología , Bacteriófagos/genética , Ceftriaxona/farmacología , Violeta de Genciana , Humanos , Klebsiella pneumoniae , Meropenem/farmacología
12.
Breast Cancer Res ; 21(1): 99, 2019 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-31464639

RESUMEN

BACKGROUND: Stromal interaction molecule (STIM) 2 is a key calcium-sensing molecule that regulates the stabilization of calcium ions (Ca2+) and therefore regulates downstream Ca2+-associated signaling and cellular events. We hypothesized that STIM2 regulates epithelial-mesenchymal transition (EMT) to promote breast cancer metastasis. METHODS: We determined the effects of gain, loss, and rescue of STIM2 on cellular motility, levels of EMT-related proteins, and secretion of transforming growth factor-ß (TGF-ß). We also conducted bioinformatics analyses and in vivo assessments of breast cancer growth and metastasis using xenograft models. RESULTS: We found a significant association between STIM2 overexpression and metastatic breast cancer. STIM2 overexpression activated the nuclear factor of activated T cells 1 (NFAT1) and TGF-ß signaling. Knockdown of STIM2 inhibited the motility of breast cancer cells by inhibiting EMT via specific suppression of NFAT1 and inhibited mammary tumor metastasis in mice. In contrast, STIM2 overexpression promoted metastasis. These findings were validated in human tissue arrays of 340 breast cancer samples for STIM2. CONCLUSION: Taken together, our results demonstrated that STIM2 specifically regulates NFAT1, which in turn regulates the expression and secretion of TGF-ß1 to promote EMT in vitro and in vivo, leading to metastasis of breast cancer.


Asunto(s)
Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción NFATC/metabolismo , Molécula de Interacción Estromal 2/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular , Núcleo Celular/metabolismo , Transición Epitelial-Mesenquimal/genética , Femenino , Expresión Génica , Técnicas de Silenciamiento del Gen , Xenoinjertos/crecimiento & desarrollo , Humanos , Neoplasias Mamarias Experimentales , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Factores de Transcripción NFATC/genética , Metástasis de la Neoplasia/genética , Transducción de Señal , Molécula de Interacción Estromal 2/genética , Factor de Crecimiento Transformador beta1/genética
13.
Biochem Biophys Res Commun ; 503(1): 242-248, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-29885840

RESUMEN

Lung metastasis is a primary obstacle in the clinical treatment of metastatic breast cancer. Most patients with lung metastasis eventually die of recurrence. Recurrence may be related to self-seeding, which occurs when circulating tumor cells re-seed into the tumors they originated from (metastasis or carcinoma in situ). Tumor-derived exosomes have been intensively revealed to promote the progression of various cancers. However, whether tumor-derived exosomes play roles in tumor self-seeding has not yet been identified. By establishing a self-seeding nude mouse model, we found that exosomes derived from MDA231-LM2 cells (subpopulations of breast cancer lung metastasis) potentiate the growth of MDA-MB-231 xenografts. More importantly, laser confocal microscopy and flow cytometry results identified that MDA231-LM2-secreted exosomes promote the seeding of MDA231-LM2 cells into MDA-MB-231 xenografts. These findings suggest MDA231-LM2-secreted exosomes as a promising target to treat breast cancer lung metastasis.


Asunto(s)
Neoplasias de la Mama/patología , Neoplasias Pulmonares/secundario , Siembra Neoplásica , Animales , Línea Celular Tumoral , Exosomas/patología , Femenino , Xenoinjertos , Humanos , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Recurrencia Local de Neoplasia/patología , Células Neoplásicas Circulantes/patología
14.
J Infect ; 88(3): 106121, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367704

RESUMEN

The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has substantially damaged the global economy and human health. The spike (S) protein of coronaviruses plays a pivotal role in viral entry by binding to host cell receptors. Additionally, it acts as the primary target for neutralizing antibodies in those infected and is the central focus for currently utilized or researched vaccines. During the virus's adaptation to the human host, the S protein of SARS-CoV-2 has undergone significant evolution. As the COVID-19 pandemic has unfolded, new mutations have arisen and vanished, giving rise to distinctive amino acid profiles within variant of concern strains of SARS-CoV-2. Notably, many of these changes in the S protein have been positively selected, leading to substantial alterations in viral characteristics, such as heightened transmissibility and immune evasion capabilities. This review aims to provide an overview of our current understanding of the structural implications associated with key amino acid changes in the S protein of SARS-CoV-2. These research findings shed light on the intricate and dynamic nature of viral evolution, underscoring the importance of continuous monitoring and analysis of viral genomes. Through these molecular-level investigations, we can attain deeper insights into the virus's adaptive evolution, offering valuable guidance for designing vaccines and developing antiviral drugs to combat the ever-evolving viral threats.


Asunto(s)
COVID-19 , Vacunas , Humanos , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/genética , Pandemias/prevención & control , Aminoácidos
15.
Microbiol Spectr ; 12(1): e0229523, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38032179

RESUMEN

IMPORTANCE: Colistin is used as a last resort in many infections caused by multidrug-resistant Gram-negative bacteria; however, colistin-resistant (COL-R) is on the rise. Hence, it is critical to develop new antimicrobial strategies to overcome COL-R. We found that nitazoxanide (NTZ) combined with colistin showed notable synergetic antibacterial activity. These findings suggest that the NTZ/colistin combination may provide an effective alternative route to combat COL-R A. baumannii and COL-R Escherichia coli infections.


Asunto(s)
Acinetobacter baumannii , Colistina , Nitrocompuestos , Tiazoles , Colistina/farmacología , Antiparasitarios/farmacología , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana
16.
Microbiol Spectr ; : e0089624, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162533

RESUMEN

With the widespread misuse of disinfectants, the clinical susceptibility of Klebsiella pneumoniae (K. pneumoniae) to chlorhexidine (CHX) has gradually diminished, posing significant challenges to clinical disinfection and infection control. K. pneumoniae employs overexpression of efflux pumps and the formation of thick biofilms to evade the lethal effects of CHX. Plumbagin (PLU) is a natural plant extract that enhances membrane permeability and reduces proton motive force. In this study, we elucidated the synergistic antimicrobial activity of PLU in combination with CHX, effectively reducing the MIC of CHX against K. pneumoniae to 1 µg/mL and below. Crucially, through crystal violet staining and confocal laser scanning microscopy live/dead staining, we discovered that PLU significantly enhances the anti-biofilm capability of CHX. Mechanistically, experiments involving membrane permeability, alkaline phosphatase leakage, reactive oxygen species, and RT-qPCR suggest that the combination of PLU and CHX improves the permeability of bacterial inner and outer membranes, promotes bacterial oxidative stress, and inhibits oqxA/B efflux pump expression. Furthermore, we conducted surface disinfection experiments on medical instruments to simulate clinical environments, demonstrating that the combination effectively reduces bacterial loads by more than 3 log10 CFU/mL. Additionally, results from resistance mutation frequency experiments indicate that combined treatment reduces the generation of resistant mutants within the bacterial population. In summary, PLU can serve as an adjuvant, enhancing the anti-biofilm capability of CHX and reducing the occurrence of resistance mutations, thereby extending the lifespan of CHX.IMPORTANCEAs disinfectants are extensively and excessively utilized worldwide, clinical pathogens are progressively acquiring resistance against these substances. However, high concentrations of disinfectants can lead to cross-resistance to antibiotics, and concurrent use of different disinfectants can promote bacterial resistance mutations and facilitate the horizontal transfer of resistance genes, which poses significant challenges for clinical treatment. Compared with the lengthy process of developing new disinfectants, enhancing the effectiveness of existing disinfectants with natural plant extracts is important and meaningful. CHX is particularly common and widely used compared with other disinfectants. Meanwhile, Klebsiella pneumoniae, as a clinically significant pathogen, exhibits high rates of resistance and pathogenicity. Previous studies and our data indicate a significant decrease in the sensitivity of clinical K. pneumoniae to CHX, highlighting the urgent need for novel strategies to address this issue. In light of this, our research is meaningful.

17.
Microbiol Spectr ; : e0387423, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162556

RESUMEN

Klebsiella quasipneumoniae is a potential pathogen that has not been studied comprehensively. The emergence of multidrug-resistant (MDR) K. quasipneumoniae, specifically strains resistant to tigecycline and carbapenem, presents a significant challenge to clinical treatment. This investigation aimed to characterize MDR K. quasipneumoniae strain FK8966, co-carrying tmexCD2-toprJ2, blaIMP-4, and blaNDM-1 by plasmids. It was observed that FK8966's MDR was primarily because of the IncHI1B-like plasmid co-carrying tmexCD2-toprJ2 and blaIMP-4, and an IncFIB(K)/IncFII(K) plasmid harboring blaNDM-1. Furthermore, the phylogenetic analysis revealed that IncHI1B-like plasmids carrying tmexCD2-toprJ2 were disseminated among different bacteria, specifically in China. Additionally, according to the comparative genomic analysis, the MDR regions indicated that the tmexCD2-toprJ2 gene cluster was inserted into the umuC gene, while blaIMP-4 was present in transposon TnAs3 linked to the class 1 integron (IntI1). It was also observed that an ΔTn3000 insertion with blaNDM-1 made a novel blaNDM-1 harboring IncFIB(K)/IncFII(K) plasmid. The antimicrobial resistance prevalence and phylogenetic analyses of K. quasipneumoniae strains indicated that FK8966 is a distinct MDR branch of K. quasipneumoniae. Furthermore, CRISPR-Cas system analysis showed that many K. quasipneumoniae CRISPR-Cas systems lacked spacers matching the two aforementioned novel resistance plasmids, suggesting that these resistance plasmids have the potential to disseminate within K. quasipneumoniae. Therefore, the spread of MDR K. quasipneumoniae and plasmids warrants further attention.IMPORTANCEThe emergence of multidrug-resistant K. quasipneumoniae poses a great threat to clinical care, and the situation is exacerbated by the dissemination of tigecycline- and carbapenem-resistant genes. Therefore, monitoring these pathogens and their resistance plasmids is urgent and crucial. This study identified tigecycline- and carbapenem-resistant K. quasipneumoniae strain, FK8966. Furthermore, it is the first study to report the coexistence of tmexCD2-toprJ2, blaIMP-4, and blaNDM-1 in K. quasipneumoniae. Moreover, the CRISPR-Cas system of many K. quasipneumoniae lacks spacers that match the plasmids carried by FK8966, which are crucial for mediating resistance against tigecycline and carbapenems, indicating their potential to disseminate within K. quasipneumoniae.

18.
J Glob Antimicrob Resist ; 33: 72-77, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36854357

RESUMEN

OBJECTIVES: Emergence of multidrug-resistant (MDR) Salmonella enterica serovar Indiana has raised global concern. Mobile genetic elements (MGEs) play vital roles in accelerating the dissemination of resistance genes in bacteria communities. The study aims to improve our understanding of the underlying resistance mechanisms and characterize the MGEs in a MDR S. Indiana isolate. METHODS: Here, we report the characteristics of a MDR pathogenic S. Indiana isolate. The antimicrobial susceptibility pattern of S. Indiana QT6365 was determined. The genomic structure of the chromosome and the plasmid, serotype, and multi-locus sequence type were analysed by whole genome sequencing. The circular form derived from IS26-flanked transposon was confirmed by reverse polymerase chain reaction and sequencing. RESULTS: S. Indiana QT6365 exhibited resistance to all tested antimicrobials except for aztreonam, amikacin, polymyxin, and tigecycline, was defined as MDR, and belonged to ST17. S. Indiana QT6365 was closely related with food resource S. Indiana C629 with similar resistance gene profiles. Multiple resistance genes are mainly carried by a novel transposon Tn7540 located on the chromosome and an IncHI2/HI2A/N plasmid. Sequence analysis and the formed circular intermediate suggested Tn7540 might be generated through homologous recombination by IS26-bounded translocatable units (IS26-fosA-IS26-intI1-dfrA12-aadA2-sul1-ISCR1-blaNDM-9-IS26). CONCLUSIONS: To the best of our knowledge, this is the first report of the novel chromosomal transposon possessing blaNDM-9 and fosA3 in S. Indiana isolated from human specimen, which might facilitate the dissemination of resistance genes and should arouse serious awareness.


Asunto(s)
Antibacterianos , Salmonella enterica , Humanos , Antibacterianos/farmacología , Serogrupo , Farmacorresistencia Bacteriana Múltiple/genética , Salmonella , Cromosomas , Heces
19.
Microbiol Spectr ; : e0405222, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36971552

RESUMEN

The continuous development of multidrug-resistant (MDR) Gram-negative bacteria poses a serious risk to public health on a worldwide scale. Colistin is used as the last-line antibiotic for the treatment of MDR pathogens, and colistin-resistant (COL-R) bacterial emergence thus has the potential to have a severe adverse impact on patient outcomes. In this study, synergistic activity was observed when colistin and flufenamic acid (FFA) were combined and used for the in vitro treatment of clinical COL-R Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii strains, as shown by checkerboard and time-kill assays. Crystal violet staining and scanning electron microscopy revealed the synergistic action of colistin-FFA against biofilms. When used to treat murine RAW264.7 macrophages, this combination did not induce any adverse toxicity. Strikingly, the survival rates of bacterially infected Galleria mellonella larvae were improved by such combination treatment, which was also sufficient to reduce the measured bacterial loads in a murine thigh infection model. Mechanistic propidium iodide (PI) staining analysis further demonstrated the ability of these agents to alter bacterial permeability in a manner that enhanced the efficacy of colistin treatment. Together, these data thus demonstrate that colistin and FFA can be synergistically combined to combat the spread of COL-R Gram-negative bacteria, providing a promising therapeutic tool with the potential to protect against COL-R bacterial infections and improve patient outcomes. IMPORTANCE Colistin is a last-line antibiotic used for the treatment of MDR Gram-negative bacterial infections. However, increasing resistance to it has been observed during clinical treatment. In this work, we assessed the efficacy of the combination of colistin and FFA for the treatment of COL-R bacterial isolates, demonstrating that the combined treatment has effective antibacterial and antibiofilm activities. Due to its low cytotoxicity and good therapeutic effects in vitro, the colistin-FFA combination may be a potential candidate for research into a resistance-modifying agent to combat infections caused by COL-R Gram-negative bacteria.

20.
mSphere ; 8(3): e0054922, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37017551

RESUMEN

Multidrug-resistant bacteria pose a tremendous challenge to public health worldwide. Many bacteria resistant to last-resort antibiotics due to antibiotic misuse have been recently reported, which may give rise to serious infections without effective treatment. Therefore, it is imperative to develop novel antimicrobial strategies. Natural phenols are known to increase bacterial membrane permeability and are potential candidates for the development of new antimicrobial agents. In this study, gold nanoparticles (Au NPs) carrying natural phenols were synthesized to combat bacteria resistant to last-resort antibiotics. Transmission electron microscopy, dynamic light scattering, zeta potential, and UV-visible spectra were used to characterize the synthesized Au NPs, which showed good monodispersity and uniform particle size. Evaluation of antibacterial activity using the broth microdilution method revealed that thymol-decorated gold nanoparticles (Thymol_Au NPs) had a broad antibacterial spectrum and higher bactericidal effects than last-resort antibiotics against last-resort-antibiotic-resistant bacteria. Considering the underlying antibacterial mechanism, the results showed that Thymol_Au NPs destroyed bacterial cell membranes. Further, Thymol_Au NPs were effective in treating mouse abdominal infections and exhibited acceptable biocompatibility without any significant toxicity in cell viability and histopathological assays, respectively, at most bactericidal concentrations. However, attention should be paid to changes in white blood cells, reticulocyte percentages, and superoxide dismutase activity during Thymol_Au NP treatment. In conclusion, Thymol_Au NPs have the potential for treating clinical infections caused by bacteria resistant to last-resort antibiotics. IMPORTANCE Excessive use of antibiotics can lead to bacterial resistance and the development of multidrug-resistant bacteria. Antibiotic misuse can also promote resistance against last-resort antibiotics. It is thus crucial to develop alternatives to antibiotics to retard the development of multidrug resistance. In recent years, the use of several nanodosage forms of antibacterial drugs has been investigated. These agents kill bacteria through a variety of mechanisms and avoid the problem of resistance. Among them, Au NPs, which are safer to use for medical applications than other metal nanoparticles, have attracted interest as potential antibacterial agents. To combat bacterial resistance to last-resort antibiotics and mitigate the problem of antimicrobial resistance, it is important and meaningful to develop antimicrobial agents based on Au NPs.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Enfermedades Transmisibles , Nanopartículas del Metal , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Timol/farmacología , Timol/uso terapéutico , Oro/farmacología , Oro/uso terapéutico , Infecciones Bacterianas/tratamiento farmacológico , Bacterias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA