Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(31): e2404193121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39042698

RESUMEN

Hematopoietic stem cells (HSCs) develop from hemogenic endothelial cells (HECs) in vivo during mouse embryogenesis. When cultured in vitro, cells from the embryo phenotypically defined as pre-HSC-I and pre-HSC-II have the potential to differentiate into HSCs. However, minimal factors required for HSC induction from HECs have not yet been determined. In this study, we demonstrated that stem cell factor (SCF) and thrombopoietin (TPO) induced engrafting HSCs from embryonic day (E) 11.5 pre-HSC-I in a serum-free and feeder-free culture condition. In contrast, E10.5 pre-HSC-I and HECs required an endothelial cell layer in addition to SCF and TPO to differentiate into HSCs. A single-cell RNA sequencing analysis of E10.5 to 11.5 dorsal aortae with surrounding tissues and fetal livers detected TPO expression confined in hepatoblasts, while SCF was expressed in various tissues, including endothelial cells and hepatoblasts. Our results suggest a transition of signal requirement during HSC development from HECs. The differentiation of E10.5 HECs to E11.5 pre-HSC-I in the aorta-gonad-mesonephros region depends on SCF and endothelial cell-derived factors. Subsequently, SCF and TPO drive the differentiation of E11.5 pre-HSC-I to pre-HSC-II/HSCs in the fetal liver. The culture system established in this study provides a beneficial tool for exploring the molecular mechanisms underlying the development of HSCs from HECs.


Asunto(s)
Diferenciación Celular , Hemangioblastos , Células Madre Hematopoyéticas , Factor de Células Madre , Trombopoyetina , Animales , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Ratones , Trombopoyetina/metabolismo , Factor de Células Madre/metabolismo , Hemangioblastos/metabolismo , Hemangioblastos/citología , Células Endoteliales/metabolismo , Células Endoteliales/citología , Transducción de Señal , Hematopoyesis/fisiología , Desarrollo Embrionario , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/citología , Hígado/embriología , Hígado/metabolismo , Hígado/citología
2.
Genes Dev ; 29(16): 1763-75, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26302791

RESUMEN

Sensory neurons with common functions are often nonrandomly arranged and form dendritic territories in stereotypic spatial patterns throughout the nervous system, yet molecular mechanisms of how neurons specify dendritic territories remain largely unknown. In Drosophila larvae, dendrites of class IV sensory (C4da) neurons completely but nonredundantly cover the whole epidermis, and the boundaries of these tiled dendritic fields are specified through repulsive interactions between homotypic dendrites. Here we report that, unlike the larval C4da neurons, adult C4da neurons rely on both dendritic repulsive interactions and external positional cues to delimit the boundaries of their dendritic fields. We identify Wnt5 derived from sternites, the ventral-most part of the adult abdominal epidermis, as the critical determinant for the ventral boundaries. Further genetic data indicate that Wnt5 promotes dendrite termination on the periphery of sternites through the Ryk receptor family kinase Derailed (Drl) and the Rho GTPase guanine nucleotide exchange factor Trio in C4da neurons. Our findings thus uncover the dendritic contact-independent mechanism that is required for dendritic boundary specification and suggest that combinatory actions of the dendritic contact-dependent and -independent mechanisms may ensure appropriate dendritic territories of a given neuron.


Asunto(s)
Dendritas , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Células Receptoras Sensoriales , Transducción de Señal , Proteínas Wnt/metabolismo , Animales , Dendritas/genética , Dendritas/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Células Epidérmicas , Epidermis/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo
3.
Proc Natl Acad Sci U S A ; 108(48): 19389-94, 2011 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-22084112

RESUMEN

The axonal projection pattern of sensory neurons typically is regulated by environmental signals, but how different sensory afferents can establish distinct projections in the same environment remains largely unknown. Drosophila class IV dendrite arborization (C4da) sensory neurons project subtype-specific axonal branches in the ventral nerve cord, and we show that the Tripartite motif protein, Anomalies in sensory axon patterning (Asap) is a critical determinant of the axonal projection patterns of different C4da neurons. Asap is highly expressed in C4da neurons with both ipsilateral and contralateral axonal projections, but the Asap level is low in neurons that have only ipsilateral projections. Mutations in asap cause a specific loss of contralateral projections, whereas overexpression of Asap induces ectopic contralateral projections in C4da neurons. We also show by biochemical and genetic analysis that Asap regulates Netrin signaling, at least in part by linking the Netrin receptor Frazzled to the downstream effector Pico. In the absence of Asap, the sensory afferent connectivity within the ventral nerve cord is disrupted, resulting in specific larval behavioral deficits. These results indicate that different levels of Asap determine distinct patterns of axonal projections of C4da neurons by modulating Netrin signaling and that the Asap-mediated axonal projection is critical for assembly of a functional sensory circuit.


Asunto(s)
Axones/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Células Receptoras Sensoriales/fisiología , Transducción de Señal/fisiología , Animales , Axones/fisiología , Proteínas de Drosophila/genética , Inmunoprecipitación , Proteínas del Tejido Nervioso/genética , Receptores de Netrina , Receptores de Superficie Celular/metabolismo , Células Receptoras Sensoriales/citología , Transducción de Señal/genética , Técnicas del Sistema de Dos Híbridos
4.
iScience ; 27(3): 109161, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38444610

RESUMEN

Forkhead box O (FOXO) family proteins are expressed in various cells, and play crucial roles in cellular metabolism, apoptosis, and aging. FOXO1-null mice exhibit embryonic lethality due to impaired endothelial cell (EC) maturation and vascular remodeling. However, FOXO1-mediated genome-wide regulation in ECs remains unclear. Here, we demonstrate that VEGF dynamically regulates FOXO1 cytosol-nucleus translocation. FOXO1 re-localizes to the nucleus via PP2A phosphatase. RNA-seq combined with FOXO1 overexpression/knockdown in ECs demonstrated that FOXO1 governs the VEGF-responsive tip cell-enriched genes, and further inhibits DLL4-NOTCH signaling. Endogenous FOXO1 ChIP-seq revealed that FOXO1 binds to the EC-unique tip-enriched genes with co-enrichment of EC master regulators, and the condensed chromatin region as a pioneer factor. We identified new promoter/enhancer regions of the VEGF-responsive tip cell genes regulated by FOXO1: ESM1 and ANGPT2. This is the first study to identify cell type-specific FOXO1 functions, including VEGF-mediated tip cell definition in primary cultured ECs.

5.
Nat Commun ; 15(1): 3330, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684656

RESUMEN

Meiotic prophase progression is differently regulated in males and females. In males, pachytene transition during meiotic prophase is accompanied by robust alteration in gene expression. However, how gene expression is regulated differently to ensure meiotic prophase completion in males remains elusive. Herein, we identify HSF5 as a male germ cell-specific heat shock transcription factor (HSF) for meiotic prophase progression. Genetic analyzes and single-cell RNA-sequencing demonstrate that HSF5 is essential for progression beyond the pachytene stage under non-stress conditions rather than heat stress. Chromatin binding analysis in vivo and DNA-binding assays in vitro suggest that HSF5 binds to promoters in a subset of genes associated with chromatin organization. HSF5 recognizes a DNA motif different from typical heat shock elements recognized by other canonical HSFs. This study suggests that HSF5 is an atypical HSF that is required for the gene expression program for pachytene transition during meiotic prophase in males.


Asunto(s)
Factores de Transcripción del Choque Térmico , Profase Meiótica I , Espermatogénesis , Femenino , Masculino , Ratones , Factores de Transcripción del Choque Térmico/metabolismo , Respuesta al Choque Térmico , Ratones Endogámicos C57BL , Ratones Noqueados , Testículo/metabolismo , Animales
6.
EMBO J ; 28(24): 3879-92, 2009 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19875983

RESUMEN

To cover the receptive field completely and non-redundantly, neurons of certain functional groups arrange tiling of their dendrites. In Drosophila class IV dendrite arborization (da) neurons, the NDR family kinase Tricornered (Trc) is required for homotypic repulsion of dendrites that facilitates dendritic tiling. We here report that Sin1, Rictor, and target of rapamycin (TOR), components of the TOR complex 2 (TORC2), are required for dendritic tiling of class IV da neurons. Similar to trc mutants, dendrites of sin1 and rictor mutants show inappropriate overlap of the dendritic fields. TORC2 components physically and genetically interact with Trc, consistent with a shared role in regulating dendritic tiling. Moreover, TORC2 is essential for Trc phosphorylation on a residue that is critical for Trc activity in vivo and in vitro. Remarkably, neuronal expression of a dominant active form of Trc rescues the tiling defects in sin1 and rictor mutants. These findings suggest that TORC2 likely acts together with the Trc signalling pathway to regulate the dendritic tiling of class IV da neurons, and thus uncover the first neuronal function of TORC2 in vivo.


Asunto(s)
Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas Portadoras/metabolismo , Cruzamientos Genéticos , Células HeLa , Humanos , Mutación , Fenotipo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Quinasas , Proteína Asociada al mTOR Insensible a la Rapamicina , Células Receptoras Sensoriales/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR
7.
Nat Commun ; 14(1): 6443, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880249

RESUMEN

Meiosis is differently regulated in males and females. In females, germ cells initiate meiosis within a limited time period in the fetal ovary and undergo a prolonged meiotic arrest until puberty. However, how meiosis initiation is coordinated with the cell cycle to coincide with S phase remains elusive. Here, we demonstrate that STRA8 binds to RB via the LXCXE motif. Mutation of the RB-binding site of STRA8 in female mice delays meiotic entry, which consequently delays progression of meiotic prophase and leads to precocious depletion of the oocyte pool. Single-cell RNA-sequencing analysis reveals that the STRA8-RB interaction is required for S phase entry and meiotic gene activation, ensuring precise timing of meiosis initiation in oocytes. Strikingly, the results suggest STRA8 could sequester RB from E2F during pre-meiotic G1/S transition. This study highlights the gene regulatory mechanisms underlying the female-specific mode of meiotic initiation in mice.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Meiosis , Animales , Femenino , Masculino , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación de la Expresión Génica , Células Germinativas/metabolismo , Maduración Sexual , Proteína de Retinoblastoma
8.
Nat Metab ; 4(2): 180-189, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35228746

RESUMEN

Adult skeletal muscle is a highly plastic tissue that readily reduces or gains its mass in response to mechanical and metabolic stimulation; however, the upstream mechanisms that control muscle mass remain unclear. Notch signalling is highly conserved, and regulates many cellular events, including proliferation and differentiation of various types of tissue stem cell via cell-cell contact. Here we reveal that multinucleated myofibres express Notch2, which plays a crucial role in disuse- or diabetes-induced muscle atrophy. Mechanistically, in both atrophic conditions, the microvascular endothelium upregulates and releases the Notch ligand, Dll4, which then activates muscular Notch2 without direct cell-cell contact. Inhibition of the Dll4-Notch2 axis substantively prevents these muscle atrophy and promotes mechanical overloading-induced muscle hypertrophy in mice. Our results illuminate a tissue-specific function of the endothelium in controlling tissue plasticity and highlight the endothelial Dll4-muscular Notch2 axis as a central upstream mechanism that regulates catabolic signals from mechanical and metabolic stimulation, providing a therapeutic target for muscle-wasting diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de Unión al Calcio , Atrofia Muscular , Animales , Endotelio , Ratones , Músculo Esquelético , Receptor Notch2
9.
Mech Dev ; 123(12): 893-906, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17027238

RESUMEN

The late-third-instar labial disc is comprised of two disc-proper cell layers, one representing mainly the ventral half of the anterior compartment (L-layer) and the other, the dorsal half of the anterior compartment and most, if not all, of the posterior compartment (M-layer). In the L-layer, Distal-less represses homothorax whereas no Distal-less-dependent homothorax repression occurs in the M-layer where Distal-less is coexpressed with homothorax. In wild-type labial discs, clawless, one of the two homeobox genes expressed in distal cells receiving maximum (Decapentaplegic+Wingless) signaling activity in leg and antennal discs, is specifically repressed by proboscipedia. A fate map, inferred from data on basic patterning gene expression in larval and pupal stages and mutant phenotypes, indicates the inner surface of the labial palpus, which includes the pseudotracheal region, to be a derivative of the distal portion of the M-layer expressing wingless, patched, Distal-less and homothorax. The outer surface of the labial palpus with more than 30 taste bristles derives from an L-layer area consisting of dorsal portions of the anterior and posterior compartments, each expressing Distal-less. Our analysis also indicates that, in adults and pupae, the anterior-posterior boundary, dividing roughly equally the outer surface of the distiproboscis, runs along the outer circumference of the inner surface of distiproboscis.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Drosophila/genética , Drosophila/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Animales , Drosophila/anatomía & histología , Drosophila/genética , Proteínas de Homeodominio/genética , Mutación , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción/genética , Proteína Wnt1
11.
Nat Commun ; 6: 6515, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25761586

RESUMEN

The refinement of neural circuits involves dendrite pruning, a process that removes inappropriate projections that are formed during development. In Drosophila sensory neurons, compartmentalized calcium (Ca(2+)) transients in dendrites act as spatiotemporal cues to trigger pruning, yet how neurons define the dendrites with Ca(2+) transients remains elusive. Here we report that local elevation of endocytic activity contributes to defining dendrites that generate Ca(2+) transients, triggering pruning. In vivo imaging of single dendrites reveals an increase of endocytosis in proximal dendrites that spatially and temporally correlates with dendrite thinning, an early step in pruning tightly coupled with compartmentalized Ca(2+) transients. Two GTPases, Rab5 and dynamin, are required for both the increased endocytic activity and compartmentalized Ca(2+) transients. Further genetic analyses suggest that local endocytosis in proximal dendrites functions cooperatively with global endocytosis-mediated protein degradation pathways to promote dendrite pruning.


Asunto(s)
Dendritas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Dinaminas/genética , Endocitosis/genética , Plasticidad Neuronal/genética , Proteínas de Unión al GTP rab5/genética , Animales , Animales Modificados Genéticamente , Calcio/metabolismo , Señalización del Calcio , Compartimento Celular , Dendritas/ultraestructura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Dinaminas/metabolismo , Endosomas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Metamorfosis Biológica/genética , Imagen Molecular , Proteolisis , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/ultraestructura , Proteínas de Unión al GTP rab5/metabolismo
12.
Nat Commun ; 4: 1825, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23652013

RESUMEN

Female Drosophila with the spinster mutation repel courting males and rarely mate. Here we show that the non-copulating phenotype can be recapitulated by the elimination of spinster functions from either spin-A or spin-D neuronal clusters, in the otherwise wild-type (spinster heterozygous) female brain. Spin-D corresponds to the olfactory projection neurons with dendrites in the antennal lobe VA1v glomerulus that is fruitless-positive, sexually dimorphic and responsive to fly odour. Spin-A is a novel local neuron cluster in the suboesophageal ganglion, which is known to process contact chemical pheromone information and copulation-related signals. A slight reduction in spinster expression to a level with a minimal effect is sufficient to shut off female sexual receptivity if the dominant-negative mechanistic target of rapamycin is simultaneously expressed, although the latter manipulation alone has only a marginal effect. We propose that spin-mediated mechanistic target of rapamycin signal transduction in these neurons is essential for females to accept the courting male.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Interneuronas/citología , Conducta Sexual Animal/fisiología , Animales , Copulación/efectos de los fármacos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Femenino , Heterocigoto , Homocigoto , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Neuroglía/citología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Vías Olfatorias/efectos de los fármacos , Vías Olfatorias/metabolismo , Interferencia de ARN/efectos de los fármacos , Receptores Odorantes/metabolismo , Conducta Sexual Animal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
13.
Science ; 340(6139): 1475-8, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23722427

RESUMEN

Dendrite pruning is critical for sculpting the final connectivity of neural circuits as it removes inappropriate projections, yet how neurons can selectively eliminate unnecessary dendritic branches remains elusive. Here, we show that calcium transients that are compartmentalized in specific dendritic branches act as temporal and spatial cues to trigger pruning in Drosophila sensory neurons. Calcium transients occurred in local dendrites at ~3 hours before branch elimination. In dendritic branches, intrinsic excitability increased locally to activate calcium influx via the voltage-gated calcium channels (VGCCs), and blockade of the VGCC activities impaired pruning. Further genetic analyses suggest that the calcium-activated protease calpain functions downstream of the calcium transients. Our findings reveal the importance of the compartmentalized subdendritic calcium signaling in spatiotemporally selective elimination of dendritic branches.


Asunto(s)
Calcio/metabolismo , Dendritas/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Canales de Calcio/metabolismo , Señalización del Calcio , Calpaína/genética , Calpaína/metabolismo , Dendritas/ultraestructura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Femenino , Masculino , Metamorfosis Biológica
14.
Biochem Res Int ; 2012: 789083, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22567285

RESUMEN

The brain changes in response to experience and altered environment. To do that, the nervous system often remodels the structures of neuronal circuits. This structural plasticity of the neuronal circuits appears to be controlled not only by intrinsic factors, but also by extrinsic mechanisms including modification of the extracellular matrix. Recent studies employing a range of animal models implicate that matrix metalloproteinases regulate multiple aspects of the neuronal development and remodeling in the brain. This paper aims to summarize recent advances of our knowledge on the neuronal functions of matrix metalloproteinases and discuss how they might relate in neuronal disease.

15.
Dev Cell ; 18(4): 621-32, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20412776

RESUMEN

In response to changes in the environment, dendrites from certain neurons change their shape, yet the mechanism remains largely unknown. Here we show that dendritic arbors of adult Drosophila sensory neurons are rapidly reshaped from a radial shape to a lattice-like shape within 24 hr after eclosion. This radial-to-lattice reshaping arises from rearrangement of the existing radial branches into the lattice-like pattern, rather than extensive dendrite pruning followed by regrowth of the lattice-shaped arbors over the period. We also find that the dendrite reshaping is completely blocked in mutants for the matrix metalloproteinase (Mmp) 2. Further genetic analysis indicates that Mmp2 promotes the dendrite reshaping through local degradation of the basement membrane upon which dendrites of the sensory neurons innervate. These findings suggest that regulated proteolytic alteration of the extracellular matrix microenvironment might be a fundamental mechanism to drive a large-scale change of dendritic structures during reorganization of neuronal circuits.


Asunto(s)
Membrana Basal/enzimología , Drosophila melanogaster/metabolismo , Regulación Enzimológica de la Expresión Génica , Metaloproteinasas de la Matriz/metabolismo , Neuronas/metabolismo , Animales , Dendritas/metabolismo , Células Epiteliales/enzimología , Matriz Extracelular/metabolismo , Femenino , Masculino , Modelos Biológicos , Modelos Genéticos , Músculos/enzimología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA