Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nature ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057666

RESUMEN

Human limbs emerge during the fourth post-conception week as mesenchymal buds, which develop into fully formed limbs over the subsequent months1. This process is orchestrated by numerous temporally and spatially restricted gene expression programmes, making congenital alterations in phenotype common2. Decades of work with model organisms have defined the fundamental mechanisms underlying vertebrate limb development, but an in-depth characterization of this process in humans has yet to be performed. Here we detail human embryonic limb development across space and time using single-cell and spatial transcriptomics. We demonstrate extensive diversification of cells from a few multipotent progenitors to myriad differentiated cell states, including several novel cell populations. We uncover two waves of human muscle development, each characterized by different cell states regulated by separate gene expression programmes, and identify musculin (MSC) as a key transcriptional repressor maintaining muscle stem cell identity. Through assembly of multiple anatomically continuous spatial transcriptomic samples using VisiumStitcher, we map cells across a sagittal section of a whole fetal hindlimb. We reveal a clear anatomical segregation between genes linked to brachydactyly and polysyndactyly, and uncover transcriptionally and spatially distinct populations of the mesenchyme in the autopod. Finally, we perform single-cell RNA sequencing on mouse embryonic limbs to facilitate cross-species developmental comparison, finding substantial homology between the two species.

2.
EMBO J ; 42(1): e110565, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36377476

RESUMEN

Cortical neuronal networks control cognitive output, but their composition and modulation remain elusive. Here, we studied the morphological and transcriptional diversity of cortical cholinergic VIP/ChAT interneurons (VChIs), a sparse population with a largely unknown function. We focused on VChIs from the whole barrel cortex and developed a high-throughput automated reconstruction framework, termed PopRec, to characterize hundreds of VChIs from each mouse in an unbiased manner, while preserving 3D cortical coordinates in multiple cleared mouse brains, accumulating thousands of cells. We identified two fundamentally distinct morphological types of VChIs, bipolar and multipolar that differ in their cortical distribution and general morphological features. Following mild unilateral whisker deprivation on postnatal day seven, we found after three weeks both ipsi- and contralateral dendritic arborization differences and modified cortical depth and distribution patterns in the barrel fields alone. To seek the transcriptomic drivers, we developed NuNeX, a method for isolating nuclei from fixed tissues, to explore sorted VChIs. This highlighted differentially expressed neuronal structural transcripts, altered exitatory innervation pathways and established Elmo1 as a key regulator of morphology following deprivation.


Asunto(s)
Lóbulo Parietal , Transcriptoma , Ratones , Animales , Interneuronas/fisiología , Colina O-Acetiltransferasa , Colinérgicos/metabolismo , Células Receptoras Sensoriales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
3.
PLoS Biol ; 22(8): e3002803, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39186794

RESUMEN

Here we propose "molecular connectomics" to link molecular and morphological cell features in three dimensions across scales, using machine learning and artificial intelligence to reveal emergent properties of complex biological systems.


Asunto(s)
Conectoma , Aprendizaje Automático , Humanos , Inteligencia Artificial , Animales
4.
Bioinformatics ; 40(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39250728

RESUMEN

SUMMARY: Visium HD by 10X Genomics is the first commercially available platform capable of capturing full scale transcriptomic data paired with a reference morphology image from archived FFPE blocks at sub-cellular resolution. However, aggregation of capture regions to single cells poses challenges. Bin2cell reconstructs cells from the highest resolution data (2 µm bins) by leveraging morphology image segmentation and gene expression information. It is compatible with established Python single cell and spatial transcriptomics software, and operates efficiently in a matter of minutes without requiring a GPU. We demonstrate improvements in downstream analysis when using the reconstructed cells over default 8 µm bins on mouse brain and human colorectal cancer data. AVAILABILITY AND IMPLEMENTATION: Bin2cell is available at https://github.com/Teichlab/bin2cell, along with documentation and usage examples, and can be installed from pip. Probe design functionality is available at https://github.com/Teichlab/gene2probe.


Asunto(s)
Programas Informáticos , Ratones , Animales , Humanos , Encéfalo/metabolismo , Encéfalo/citología , Análisis de la Célula Individual/métodos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Transcriptoma , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Procesamiento de Imagen Asistido por Computador/métodos
5.
PLoS Biol ; 18(2): e3000613, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32027647

RESUMEN

Cortical interneurons expressing vasoactive intestinal polypeptide (VIP) and choline acetyltransferase (ChAT) are sparsely distributed throughout the neocortex, constituting only 0.5% of its neuronal population. The co-expression of VIP and ChAT suggests that these VIP/ChAT interneurons (VChIs) can release both γ-aminobutyric acid (GABA) and acetylcholine (ACh). In vitro physiological studies quantified the response properties and local connectivity patterns of the VChIs; however, the function of VChIs has not been explored in vivo. To study the role of VChIs in cortical network dynamics and their long-range connectivity pattern, we used in vivo electrophysiology and rabies virus tracing in the barrel cortex of mice. We found that VChIs have a low spontaneous spiking rate (approximately 1 spike/s) in the barrel cortex of anesthetized mice; nevertheless, they responded with higher fidelity to whisker stimulation than the neighboring layer 2/3 pyramidal neurons (Pyrs). Analysis of long-range inputs to VChIs with monosynaptic rabies virus tracing revealed that direct thalamic projections are a significant input source to these cells. Optogenetic activation of VChIs in the barrel cortex of awake mice suppresses the sensory responses of excitatory neurons in intermediate amplitudes of whisker deflections while increasing the evoked spike latency. The effect of VChI activation on the response was similar for both high-whisking (HW) and low-whisking (LW) conditions. Our findings demonstrate that, despite their sparsity, VChIs can effectively modulate sensory processing in the cortical microcircuit.


Asunto(s)
Colina O-Acetiltransferasa/metabolismo , Interneuronas/fisiología , Corteza Somatosensorial/citología , Péptido Intestinal Vasoactivo/metabolismo , Animales , Colina O-Acetiltransferasa/genética , Potenciales Evocados , Potenciales Postsinápticos Inhibidores , Integrasas/genética , Interneuronas/metabolismo , Ratones , Ratones Transgénicos , Vías Nerviosas , Neuronas/metabolismo , Neuronas/fisiología , Optogenética , Corteza Somatosensorial/metabolismo , Péptido Intestinal Vasoactivo/genética , Núcleos Talámicos Ventrales/metabolismo , Vibrisas
6.
J Neurochem ; 158(6): 1320-1333, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33301603

RESUMEN

One of the urgent tasks of neuroscience is to understand how neuronal circuits operate, what makes them fail, and how to repair them when needed. Achieving this goal requires identifying the principal circuitry elements and their interactions with one another. However, what constitutes 'an atom' of a neuronal circuit, a neuronal type, is a complex question. In this review we focus on a class of cortical neurons that are exclusively identified by the expression of vasoactive intestinal polypeptide (VIP) and choline acetyltransferase (ChAT). The genetic profile of these VIP+ /ChAT+ interneurons suggests that they can release both γ-aminobutyric acid (GABA) and acetylcholine (ACh). This hints to a specific potential role in the cortical circuitry. Yet the VIP+ /ChAT+ interneurons are sparse (a mere 0.5% of the cortical neurons), which raises questions about their potential to significantly affect the circuit function. In view of recent developments in genetic techniques that allow for direct manipulation of these neurons, we provide a thorough and updated picture of the properties of the VIP+ /ChAT+ interneurons. We discuss their genetic profile, their physiological and structural properties, and their input-output mapping in sensory cortices and the medial prefrontal cortex (mPFC). Then, we examine possible amplification mechanisms for mediating their function in the cortical microcircuit. Finally, we discuss directions for further exploration of the VIP+ /ChAT+ population, focusing on its function during behavioral tasks as compared to the VIP+ /ChAT- population.


Asunto(s)
Corteza Cerebral/metabolismo , Colina O-Acetiltransferasa/biosíntesis , Colina O-Acetiltransferasa/genética , Interneuronas/metabolismo , Péptido Intestinal Vasoactivo/biosíntesis , Péptido Intestinal Vasoactivo/genética , Animales , Corteza Cerebral/química , Colina O-Acetiltransferasa/análisis , Humanos , Interneuronas/química , Transcriptoma/fisiología , Péptido Intestinal Vasoactivo/análisis
7.
FASEB J ; 33(10): 11223-11234, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31311324

RESUMEN

Recent reports attribute numerous regulatory functions to the nuclear paraspeckle-forming long noncoding RNA, nuclear enriched assembly transcript 1 (NEAT1), but the implications of its involvement in Parkinson's disease (PD) remain controversial. To address this issue, we assessed NEAT1 expression levels and cell type patterns in the substantia nigra (SN) from 53 donors with and without PD, as well as in interference tissue culture tests followed by multiple in-house and web-available models of PD. PCR quantification identified elevated levels of NEAT1 expression in the PD SN compared with control brains, an elevation that was reproducible across a multitude of disease models. In situ RNA hybridization supported neuron-specific formation of NEAT1-based paraspeckles at the SN and demonstrated coincreases of NEAT1 and paraspeckles in cultured cells under paraquat (PQ)-induced oxidative stress. Furthermore, neuroprotective agents, including fenofibrate and simvastatin, induced NEAT1 up-regulation, whereas RNA interference-mediated depletion of NEAT1 exacerbated death of PQ-exposed cells in a leucine-rich repeat kinase 2-mediated manner. Our findings highlight a novel protective role for NEAT1 in PD and suggest a previously unknown mechanism for the neuroprotective traits of widely used preventive therapeutics.-Simchovitz, A., Hanan, M., Niederhoffer, N., Madrer, N., Yayon, N., Bennett, E. R., Greenberg, D. S., Kadener, S., Soreq, H. NEAT1 is overexpressed in Parkinson's disease substantia nigra and confers drug-inducible neuroprotection from oxidative stress.


Asunto(s)
Neuroprotección/fisiología , Estrés Oxidativo/fisiología , Enfermedad de Parkinson/metabolismo , ARN Largo no Codificante/metabolismo , Sustancia Negra/metabolismo , Encéfalo/metabolismo , Línea Celular , Células HEK293 , Humanos , Neuronas/metabolismo , Interferencia de ARN/fisiología
8.
Gut ; 67(6): 1124-1134, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28381526

RESUMEN

OBJECTIVE: Both non-alcoholic fatty liver disease (NAFLD) and the multitarget complexity of microRNA (miR) suppression have recently raised much interest, but the in vivo impact and context-dependence of hepatic miR-target interactions are incompletely understood. Assessing the relative in vivo contributions of specific targets to miR-mediated phenotypes is pivotal for investigating metabolic processes. DESIGN: We quantified fatty liver parameters and the levels of miR-132 and its targets in novel transgenic mice overexpressing miR-132, in liver tissues from patients with NAFLD, and in diverse mouse models of hepatic steatosis. We tested the causal nature of miR-132 excess in these phenotypes by injecting diet-induced obese mice with antisense oligonucleotide suppressors of miR-132 or its target genes, and measured changes in metabolic parameters and transcripts. RESULTS: Transgenic mice overexpressing miR-132 showed a severe fatty liver phenotype and increased body weight, serum low-density lipoprotein/very low-density lipoprotein (LDL/VLDL) and liver triglycerides, accompanied by decreases in validated miR-132 targets and increases in lipogenesis and lipid accumulation-related transcripts. Likewise, liver samples from both patients with NAFLD and mouse models of hepatic steatosis or non-alcoholic steatohepatitis (NASH) displayed dramatic increases in miR-132 and varying decreases in miR-132 targets compared with controls. Furthermore, injecting diet-induced obese mice with anti-miR-132 oligonucleotides, but not suppressing its individual targets, reversed the hepatic miR-132 excess and hyperlipidemic phenotype. CONCLUSIONS: Our findings identify miR-132 as a key regulator of hepatic lipid homeostasis, functioning in a context-dependent fashion via suppression of multiple targets and with cumulative synergistic effects. This indicates reduction of miR-132 levels as a possible treatment of hepatic steatosis.


Asunto(s)
Lipogénesis/genética , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Anciano , Animales , Femenino , Humanos , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/etiología , Lípidos/sangre , Lipogénesis/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Obesos , Ratones Transgénicos , MicroARNs/antagonistas & inhibidores , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Oligonucleótidos Antisentido/farmacología
9.
Proc Natl Acad Sci U S A ; 112(5): E467-71, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25535364

RESUMEN

Recent international terror outbreaks notably involve long-term mental health risks to the exposed population, but whether physical health risks are also anticipated has remained unknown. Here, we report fear of terror-induced annual increases in resting heart rate (pulse), a notable risk factor of all-cause mortality. Partial least squares analysis based on 325 measured parameters successfully predicted annual pulse increases, inverse to the expected age-related pulse decline, in approximately 4.1% of a cohort of 17,380 apparently healthy active Israeli adults. Nonbiased hierarchical regression analysis among 27 of those parameters identified pertinent fear of terror combined with the inflammatory biomarker C-reactive protein as prominent coregulators of the observed annual pulse increases. In comparison, basal pulse primarily depended on general physiological parameters and reduced cholinergic control over anxiety and inflammation, together indicating that consistent exposure to terror threats ignites fear-induced exacerbation of preexisting neuro-immune risks of all-cause mortality.


Asunto(s)
Proteína C-Reactiva/fisiología , Miedo , Frecuencia Cardíaca/fisiología , Adulto , Humanos , Inflamación/fisiopatología
10.
Hum Mol Genet ; 23(17): 4569-80, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24722204

RESUMEN

MicroRNAs (miRNAs) can repress multiple targets, but how a single de-balanced interaction affects others remained unclear. We found that changing a single miRNA-target interaction can simultaneously affect multiple other miRNA-target interactions and modify physiological phenotype. We show that miR-608 targets acetylcholinesterase (AChE) and demonstrate weakened miR-608 interaction with the rs17228616 AChE allele having a single-nucleotide polymorphism (SNP) in the 3'-untranslated region (3'UTR). In cultured cells, this weakened interaction potentiated miR-608-mediated suppression of other targets, including CDC42 and interleukin-6 (IL6). Postmortem human cortices homozygote for the minor rs17228616 allele showed AChE elevation and CDC42/IL6 decreases compared with major allele homozygotes. Additionally, minor allele heterozygote and homozygote subjects showed reduced cortisol and elevated blood pressure, predicting risk of anxiety and hypertension. Parallel suppression of the conserved brain CDC42 activity by intracerebroventricular ML141 injection caused acute anxiety in mice. We demonstrate that SNPs in miRNA-binding regions could cause expanded downstream effects changing important biological pathways.


Asunto(s)
Ansiedad/genética , Hipertensión/genética , MicroARNs/metabolismo , Acetilcolinesterasa/genética , Alelos , Animales , Secuencia de Bases , Presión Sanguínea , Encéfalo/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Voluntarios Sanos , Heterocigoto , Homocigoto , Humanos , Hidrocortisona/sangre , Hipertensión/sangre , Hipertensión/fisiopatología , Interleucina-6/genética , Masculino , Ratones Endogámicos C57BL , MicroARNs/genética , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética , Primates/genética , Especificidad de la Especie , Proteína de Unión al GTP cdc42/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA