RESUMEN
BACKGROUND: NOTCH1 pathogenic variants are implicated in multiple types of congenital heart defects including hypoplastic left heart syndrome, where the left ventricle is underdeveloped. It is unknown how NOTCH1 regulates human cardiac cell lineage determination and cardiomyocyte proliferation. In addition, mechanisms by which NOTCH1 pathogenic variants lead to ventricular hypoplasia in hypoplastic left heart syndrome remain elusive. METHODS: CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 genome editing was utilized to delete NOTCH1 in human induced pluripotent stem cells. Cardiac differentiation was carried out by sequential modulation of WNT signaling, and NOTCH1 knockout and wild-type differentiating cells were collected at day 0, 2, 5, 10, 14, and 30 for single-cell RNA-seq. RESULTS: Human NOTCH1 knockout induced pluripotent stem cells are able to generate functional cardiomyocytes and endothelial cells, suggesting that NOTCH1 is not required for mesoderm differentiation and cardiovascular development in vitro. However, disruption of NOTCH1 blocks human ventricular-like cardiomyocyte differentiation but promotes atrial-like cardiomyocyte generation through shortening the action potential duration. NOTCH1 deficiency leads to defective proliferation of early human cardiomyocytes, and transcriptomic analysis indicates that pathways involved in cell cycle progression and mitosis are downregulated in NOTCH1 knockout cardiomyocytes. Single-cell transcriptomic analysis reveals abnormal cell lineage determination of cardiac mesoderm, which is manifested by the biased differentiation toward epicardial and second heart field progenitors at the expense of first heart field progenitors in NOTCH1 knockout cell populations. CONCLUSIONS: NOTCH1 is essential for human ventricular-like cardiomyocyte differentiation and proliferation through balancing cell fate determination of cardiac mesoderm and modulating cell cycle progression. Because first heart field progenitors primarily contribute to the left ventricle, we speculate that pathogenic NOTCH1 variants lead to biased differentiation of first heart field progenitors, blocked ventricular-like cardiomyocyte differentiation, and defective cardiomyocyte proliferation, which collaboratively contribute to left ventricular hypoplasia in hypoplastic left heart syndrome.
Asunto(s)
Síndrome del Corazón Izquierdo Hipoplásico , Células Madre Pluripotentes Inducidas , Humanos , Células Endoteliales/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular/fisiología , Miocitos Cardíacos/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismoRESUMEN
Multiple myeloma (MM) patients with the t(14;16) translocation have a poor prognosis, and unlike other molecular subgroups, their outcome has not improved with the introduction of bortezomib (Bzb). The mechanism underlying innate resistance of MM to Bzb is unknown. In the present study, we have investigated how MAF overexpression impacts resistance to proteasome inhibitor (PI) therapy (Bzb and carfilzomib). High levels of MAF protein were found in t(14;16) cell lines; cell lines from the t(4;14) subgroup had intermediate levels, whereas cell lines from the other subgroups had low levels. High expression of MAF protein in t(14;16) was associated with significantly higher PI half-maximum inhibitory concentration values compared with other molecular subgroups. PI exposure abrogated glycogen synthase kinase 3ß (GSK3ß)-mediated degradation of MAF protein, resulting in increased MAF protein stability and PI resistance. Subsequent studies using loss-of-function and gain-of-function models showed that silencing MAF led to increased sensitivity to PIs, enhanced apoptosis, and activation of caspase-3, -7, -8, -9, poly (ADP-ribose) polymerase, and lamin A/C. In contrast, overexpression of MAF resulted in increased resistance to PIs and reduced apoptosis. These results define the role of MAF and GSK3 in the resistance of t(14;16) MM to PIs and identifies a novel mechanism by which MAF protein levels are regulated by PIs, which in turn confers resistance to PIs.
Asunto(s)
Resistencia a Antineoplásicos , Inmunidad Innata , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Inhibidores de Proteasoma/uso terapéutico , Proteínas Proto-Oncogénicas c-maf/metabolismo , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Línea Celular Tumoral , Cromosomas Humanos Par 14/genética , Cromosomas Humanos Par 16/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Inmunidad Innata/efectos de los fármacos , Laminas/metabolismo , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Fosforilación/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Pronóstico , Inhibidores de Proteasoma/farmacología , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-maf/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Translocación GenéticaRESUMEN
BACKGROUND: Multiple myeloma (MM) patients with t(14;20) have a poor prognosis and their outcome has not improved following the introduction of bortezomib (Bzb). The mechanism underlying the resistance to proteasome inhibitors (PIs) for this subset of patients is unknown. METHODS: IC50 of Bzb and carfilzomib (CFZ) in human myeloma cell lines (HMCLs) were established by MTT assay. Gene Expression profile (GEP) analysis was used to determine gene expression in primary myeloma cells. Immunoblotting analysis was performed for MAFb and caspase family proteins. Immunofluorescence staining was used to detect the location of MAFb protein in MM cells. Lentiviral infections were used to knock-down MAFb expression in two lines. Apoptosis detection by flow cytometry and western blot analysis was performed to determine the molecular mechanism MAFb confers resistance to proteasome inhibitors. RESULTS: We found high levels of MAFb protein in cell lines with t(14;20), in one line with t(6;20), in one with Igλ insertion into MAFb locus, and in primary plasma cells from MM patients with t(14;20). High MAFb protein levels correlated with higher IC50s of PIs in MM cells. Inhibition of GSK3ß activity or treatment with Bzb or CFZ prevented MAFb protein degradation without affecting the corresponding mRNA level indicating a role for GSK3 and proteasome inhibitors in regulation of MAFb stability. Silencing MAFb restored sensitivity to Bzb and CFZ, and enhanced PIs-induced apoptosis and activation of caspase-3, - 8, - 9, PARP and lamin A/C suggesting that high expression of MAFb protein leads to insensitivity to proteasome inhibitors. CONCLUSION: These results highlight the role of post-translational modification of MAFb in maintaining its protein level, and identify a mechanism by which proteasome inhibitors induced stabilization of MAFb confers resistance to proteasome inhibitors, and provide a rationale for the development of targeted therapeutic strategies for this subset of patients.
Asunto(s)
Factor de Transcripción MafB/fisiología , Mieloma Múltiple/tratamiento farmacológico , Inhibidores de Proteasoma/uso terapéutico , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Humanos , Factor de Transcripción MafB/análisis , Factor de Transcripción MafB/genética , Mieloma Múltiple/patologíaRESUMEN
The Notch signaling pathway plays a crucial role in skeletal development and homeostasis by regulating the proliferation and differentiation of osteoblasts and osteoclasts. However, the molecular mechanisms modulating the level and activity of Notch receptors in bone cells remain unknown. In this study, we uncovered that LNX2, an E3 ubiquitin ligase and Notch inhibitor Numb binding protein, was up-regulated during osteoclast differentiation. Knocking-down LNX2 expression in bone marrow macrophages by lentivirus-mediated short hairpin RNAs markedly inhibited osteoclast formation. Decreased LNX2 expression attenuated macrophage colony-stimulating factor (M-CSF)-induced ERK and AKT activation and RANKL-stimulated activation of NF-κB and JNK pathways; therefore, accelerated osteoclast apoptosis. Additionally, loss of LNX2 led to an increased accumulation of Numb, which promoted the degradation of Notch and caused a reduction of the expression of the Notch downstream target gene, Hes1. We conclude that LNX2 regulates M-CSF/RANKL and the Notch signaling pathways during osteoclastogenesis.
Asunto(s)
Proteínas Portadoras/metabolismo , Diferenciación Celular/fisiología , Regulación de la Expresión Génica/fisiología , Osteoclastos/citología , Transducción de Señal/fisiología , Animales , Apoptosis/fisiología , Proliferación Celular , Técnica del Anticuerpo Fluorescente , Immunoblotting , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular , Factor Estimulante de Colonias de Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteoclastos/metabolismo , Ligando RANK/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Notch2/metabolismoRESUMEN
Iron is essential for osteoclast differentiation, and iron overload in a variety of hematologic diseases is associated with excessive bone resorption. Iron uptake by osteoclast precursors via the transferrin cycle increases mitochondrial biogenesis, reactive oxygen species production, and activation of cAMP response element-binding protein, a critical transcription factor downstream of receptor activator of NF-κB-ligand-induced calcium signaling. These changes are required for the differentiation of osteoclast precursors to mature bone-resorbing osteoclasts. However, the molecular mechanisms regulating cellular iron metabolism in osteoclasts remain largely unknown. In this report, we provide evidence that Steap4, a member of the six-transmembrane epithelial antigen of prostate (Steap) family proteins, is an endosomal ferrireductase with a critical role in cellular iron utilization in osteoclasts. Specifically, we show that Steap4 is the only Steap family protein that is up-regulated during osteoclast differentiation. Knocking down Steap4 expression in vitro by lentivirus-mediated short hairpin RNAs inhibits osteoclast formation and decreases cellular ferrous iron, reactive oxygen species, and the activation of cAMP response element-binding protein. These results demonstrate that Steap4 is a critical enzyme for cellular iron uptake and utilization in osteoclasts and, thus, indispensable for osteoclast development and function.
Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , FMN Reductasa/metabolismo , Hierro/metabolismo , Proteínas de la Membrana/metabolismo , Osteoclastos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Endosomas/genética , Endosomas/metabolismo , FMN Reductasa/genética , Técnicas de Silenciamiento del Gen , Proteínas de la Membrana/genética , Ratones , Osteoclastos/citologíaRESUMEN
Bone mass declines with age but the mechanisms responsible remain unclear. Here we demonstrate that deletion of a conditional allele for Atg7, a gene essential for autophagy, from osteocytes caused low bone mass in 6-month-old male and female mice. Cancellous bone volume and cortical thickness were decreased, and cortical porosity increased, in conditional knock-out mice compared with control littermates. These changes were associated with low osteoclast number, osteoblast number, bone formation rate, and wall width in the cancellous bone of conditional knock-out mice. In addition, oxidative stress was higher in the bones of conditional knock-out mice as measured by reactive oxygen species levels in the bone marrow and by p66(shc) phosphorylation in L6 vertebra. Each of these changes has been previously demonstrated in the bones of old versus young adult mice. Thus, these results demonstrate that suppression of autophagy in osteocytes mimics, in many aspects, the impact of aging on the skeleton and suggest that a decline in autophagy with age may contribute to the low bone mass associated with aging.
Asunto(s)
Fémur/metabolismo , Vértebras Lumbares/metabolismo , Osteocitos/fisiología , Envejecimiento , Animales , Autofagia , Proteína 7 Relacionada con la Autofagia , Densidad Ósea , Diferenciación Celular , Células Cultivadas , Femenino , Fémur/diagnóstico por imagen , Fémur/patología , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Osteoblastos/fisiología , Osteoclastos/fisiología , Estrés Oxidativo , Radiografía , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Genetic studies in human and mice have pinpointed an essential role of Notch signaling in osteoblast and osteoclast differentiation during skeletal development and bone remodeling. However, the factors and pathways regulating Notch activation in bone cells remain largely unknown. In this in vitro study, we have provided evidence that two of the TspanC8 subfamily members of tetraspanins, Tspan-5 and Tspan-10, are up-regulated during osteoclast differentiation and knockdown of their expression by shRNAs dramatically inhibits osteoclastogenesis. Loss of Tspan-5 and Tspan-10 in osteoclast lineage cells results in attenuation of ADAM10 maturation and Notch activation. Therefore, these two tetraspanins play a critical role in osteoclast formation, at least in part, by modulating Notch signaling pathway.
Asunto(s)
Diferenciación Celular/fisiología , Osteoclastos/metabolismo , Receptores Notch/metabolismo , Tetraspaninas/metabolismo , Animales , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Immunoblotting , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología , TransfecciónRESUMEN
Pulmonary atresia with intact ventricular septum (PA/IVS) is a rare congenital heart defect that causes a significant decrease of blood outflow from the heart and is fatal if left untreated. iPSC line NCHi013-A was produced from peripheral blood mononuclear cells from a male child with PA/IVS using Sendai virus reprogramming. NCHi013-A displayed normal stem cell morphology, expressed markers for pluripotency, and presented ability to differentiate into cells of endoderm, ectoderm, and mesoderm lineages. The iPSC line also maintained normal karyotype, was validated for cell identity, and tested negative for transgenes and mycoplasma contamination.
Asunto(s)
Células Madre Pluripotentes Inducidas , Atresia Pulmonar , Masculino , Atresia Pulmonar/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Preescolar , Diferenciación Celular , Cardiopatías Congénitas/patología , Línea CelularRESUMEN
Pulmonary atresia with intact ventricular septum (PA-IVS) is a rare congenital heart defect characterized by underdeveloped pulmonary valve and right ventricular hypoplasia. Neonates undergoing surgery to open pulmonary valve have a range of post-surgical ventricular recovery: single-ventricle (1v) palliation, one-and-half ventricle (1.5v) palliation, and bi-ventricular (2v) repair. PA-IVS-1.5v typically requires surgical intervention to install cavopulmonary shunt and entails partial right ventricle recovery. NCHi016-A is an iPSC line derived from a 5-year-old female with PA-IVS-1.5v using Sendai Virus reprogramming. This iPSC line shows typical iPSC morphology, has normal karyotype, expresses pluripotency markers, and has potential to differentiate into three germ layers.
Asunto(s)
Células Madre Pluripotentes Inducidas , Atresia Pulmonar , Femenino , Atresia Pulmonar/patología , Atresia Pulmonar/cirugía , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Preescolar , Línea Celular , Cardiopatías Congénitas/patología , Cardiopatías Congénitas/cirugía , Diferenciación Celular , Ventrículos Cardíacos/patologíaRESUMEN
Truncus arteriosus (TA) is a congenital heart defect where one main blood vessel emerges from the heart, instead of individual aorta and pulmonary artreries. Peripheral mononuclear cells (PBMCs) of a male infant with TA were reporogrammed using Sendai virus. The resultant iPSC line (NCHi015-A) displayed normal colony formation, expressed pluripotency markers, and differentiated into cells from three germ layers. NCHi015-A was matched to the patient's genetic profile, had normal karyotype, retained genetic variants in KMT2D and NOTCH1, and tested negative for reprogramming transgene. This iPSC line can be used for studying congenital heart defects associated with genetic variants in KMT2D and NOTCH1.
Asunto(s)
Células Madre Pluripotentes Inducidas , Receptor Notch1 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Receptor Notch1/genética , Receptor Notch1/metabolismo , Tronco Arterial , Proteínas de Unión al ADN/genética , Línea Celular , Heterocigoto , Diferenciación Celular , Proteínas de NeoplasiasRESUMEN
NOTCH1 signaling is crucial for cardiovascular development. Numerous studies have identified heterozygous NOTCH1 loss of function and missense variants associated with a spectrum of congenital heart diseases (CHD). We generated induced pluripotent stem cells (iPSC) from a healthy individual to develop a model for NOTCH1+/- iPSC to study the molecular pathogenesis of CHD. NOTCH1+/-iPSC (NCHi014-A) have normal morphology and karyotype, are identical to the parental cell line, express pluripotency markers and have the ability to differentiate to the three germ layers. NOTCH1+/- iPSC can be used as a tool to study the cellular and molecular mechanisms underlying NOTCH1-associated human CHD.
Asunto(s)
Cardiopatías Congénitas , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética , Línea Celular , Cardiopatías Congénitas/metabolismo , Mutación Missense , Receptor Notch1/genética , Receptor Notch1/metabolismoRESUMEN
Down syndrome is a congenital disorder resulting from an extra full or partial chromosome 21, which is characterized by a spectrum of systemic developmental abnormalities, including those affecting the cardiovascular system. Here, we generated an iPSC line from peripheral blood mononuclear cells of a male adolescent with Down syndrome-associated congenital heart defects through Sendai virus-mediated transfection of 4 Yamanaka factors. This line exhibited normal morphology, expressed pluripotency markers, trisomy 21 karyotype, and could be differentiated into three germ layers. This iPSC line can be used for studying cellular and developmental etiologies of congenital heart defects induced by aneuploidy of chromosome 21.
Asunto(s)
Síndrome de Down , Cardiopatías Congénitas , Células Madre Pluripotentes Inducidas , Humanos , Masculino , Adolescente , Reprogramación Celular , Síndrome de Down/complicaciones , Leucocitos Mononucleares , Línea Celular , Vectores Genéticos , Factores de Transcripción/genética , Diferenciación Celular , Cardiopatías Congénitas/genéticaRESUMEN
Down syndrome is a genetic anomaly that manifests when there is a mistake during cell division, resulting in an additional chromosome 21. Down syndrome can impact cognitive capabilities and physical development, giving rise to diverse developmental disparities and an elevated likelihood of certain health issues. The iPSC line NCHi010-A was generated from peripheral blood mononuclear cells of a 6-year-old female with Down syndrome and without congenital heart disease using Sendai virus reprogramming. NCHi010-A displayed a morphology of pluripotent stem cells, expressed pluripotency markers, retained trisomy 21 karyotype, and demonstrated potential to differentiate into cells representative of the three germ layers.
Asunto(s)
Síndrome de Down , Cardiopatías Congénitas , Células Madre Pluripotentes Inducidas , Femenino , Humanos , Niño , Células Madre Pluripotentes Inducidas/metabolismo , Reprogramación Celular , Síndrome de Down/metabolismo , Diferenciación Celular , Leucocitos Mononucleares/metabolismo , Línea Celular , Vectores Genéticos , Factores de Transcripción/genética , Cardiopatías Congénitas/genéticaRESUMEN
Hypoplastic left heart syndrome (HLHS) is a congenital heart malformation clinically characterized by an underdeveloped left ventricle, mitral or aortic valve stenosis or atresia, and narrowed ascending aorta. Although genetic etiology of HLHS is heterogenous, recurrent NOTCH1 variants have been associated with this defect. We report generation of an iPSC line derived from a female with HLHS with a heterozygous missense NOTCH1 (c.2058G > A; p.Gly661Ser) mutation within the conserved EGF-like repeat 17. This iPSC line exhibited typical cellular morphology, normal karyotype, high expression of pluripotent markers, and trilineage differentiation potential; and can be leveraged to dissect the complex NOTCH1-mediated HLHS disease mechanism.
Asunto(s)
Cardiopatías Congénitas , Síndrome del Corazón Izquierdo Hipoplásico , Células Madre Pluripotentes Inducidas , Humanos , Femenino , Síndrome del Corazón Izquierdo Hipoplásico/genética , Síndrome del Corazón Izquierdo Hipoplásico/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Cardiopatías Congénitas/metabolismo , Mutación/genética , Heterocigoto , Receptor Notch1/genética , Receptor Notch1/metabolismoRESUMEN
Alagille syndrome (ALGS) is an autosomal dominant disease affecting the liver, heart and other organs with high variability. About 95% of ALGS cases are associated with pathogenic variants in JAG1, encoding the Jagged1 ligand that binds to Notch receptors. The iPSC line NCHi012-A was derived from an ALGS patient with cholestatic liver disease and mild pulmonary stenosis, who is heterozygous for a 2â¯bp deletion in the JAG1 coding sequence. We report here an initial characterization of NCHi012-A to evaluate its morphology, pluripotency, differentiation potential, genotype, karyotype and identity to the source patient.
Asunto(s)
Síndrome de Alagille , Células Madre Pluripotentes Inducidas , Humanos , Síndrome de Alagille/genética , Síndrome de Alagille/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Receptores Notch/metabolismo , Corazón , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismoRESUMEN
Alagille syndrome (ALGS) is a multisystem disease with high variability in clinical features. ALGS is predominantly caused by pathogenic variants in the Notch ligand JAG1. An iPSC line, NCHi011-A, was generated from a ALGS patient with complex cardiac phenotypes consisting of pulmonic valve and branch pulmonary artery stenosis. NCHi011-A is heterozygous for a single base duplication causing a frameshift in the JAG1 gene. This iPSC line demonstrates normal cellular morphology, expression of pluripotency markers, trilineage differentiation potential, and identity to the source patient. NCHi011-A provides a resource for modeling ALGS and investigating the role of Notch signaling in the disease.
Asunto(s)
Síndrome de Alagille , Células Madre Pluripotentes Inducidas , Femenino , Humanos , Adulto Joven , Adulto , Síndrome de Alagille/genética , Síndrome de Alagille/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Corazón , Diferenciación CelularRESUMEN
The generation of cardiomyocytes (CMs) and endothelial cells (ECs) from human induced pluripotent stem cells (iPSCs) allows for precise modeling of cardiovascular disease using clinically relevant and patient-specific cells. Differentiation of human iPSCs into cardiomyocytes (iPSC-CMs) and endothelial cells (iPSC-ECs) is governed by small molecules that regulate the WNT signaling pathway. Here we outline the detailed steps to generate iPSC-CMs and iPSC-ECs through small molecule-mediated monolayer differentiation.
Asunto(s)
Células Madre Pluripotentes Inducidas , Diferenciación Celular , Células Endoteliales , Humanos , Miocitos Cardíacos , Vía de Señalización WntRESUMEN
Pulmonary atresia with intact ventricular septum (PA-IVS) is a rare congenital heart defect defined by membranous or muscular atresia of the right ventricular outflow tract where patients display varying degrees of hypoplasia of the right ventricle. This condition results in cyanosis due to an inability of blood to flow from the right ventricle to the pulmonary arteries, thus requiring immediate surgical intervention after birth. An iPSC line was generated from peripheral blood mononuclear cells of a 11-year-old male patient diagnosed with PA-IVS through Sendai virus-mediated reprogramming. This disease-specific iPSC line was characterized by immunocytochemistry, STR analysis, karyotype analysis, and mycoplasma testing.