Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 72(4): 605-607, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30444996

RESUMEN

In this issue of Molecular Cell, Weith et al. (2018) demonstrate that p97, together with a SEP adaptor, can catalyze ordered subunit exchange to facilitate the biogenesis of protein phosphatase-1 (PP1) holoenzyme, establishing a novel ubiquitin-independent "segregase" function for this versatile ATPase.


Asunto(s)
Proteínas de Ciclo Celular , Ubiquitina , Adenosina Trifosfatasas , Holoenzimas , ATPasas de Translocación de Protón , Proteína que Contiene Valosina
2.
Mol Cell Proteomics ; : 100854, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39389361

RESUMEN

Ubiquitin carboxyl-terminal hydrolase 19 (USP19) is a unique deubiquitinase (DUB), characterized by multiple variants generated by alternative splicing. Several variants bear a C-terminal transmembrane domain that anchors them to the endoplasmic reticulum (ER). Other than regulating protein stability by preventing proteasome degradation, USP19 has been reported to rescue substrates from ER-associated protein degradation (ERAD) in a catalytic-independent manner, promote autophagy and address proteins to lysosomal degradation via endosomal microautophagy. USP19 has recently emerged as the protein responsible for the unconventional secretion of misfolded proteins including Parkinson's disease-associated protein α-synuclein. Despite mounting evidence that USP19 plays crucial roles in several biological processes, the underlying mechanisms are unclear due to lack of information on the physiological substrates of USP19. Herein, we used high-resolution quantitative proteomics to analyze changes in the secretome and cell proteome induced by loss of USP19 to identify proteins whose secretion or turnover is regulated by USP19. We found that ablation of USP19 induced significant proteomic alterations both in and out of the cell. Loss of USP19 impaired the release of several lysosomal proteins, including legumain (LGMN) and several cathepsins. In order to understand the underlaying mechanism, we dissected the USP19-regulated secretion of LGMN in several cell types. We found that LGMN was not a DUB substrate of USP19 and that its USP19-dependent release did not require their direct interaction. LGMN secretion occurred by a mechanism that involved the Golgi apparatus, autophagosome formation and lysosome function. This mechanism resembled the recently described "lysosomal exocytosis", by which lysosomal hydrolases are secreted, when ubiquitination of p62 is increased in cells lacking deubiquitinases such as USP15 and USP17. In conclusion, our proteomic characterization of USP19 has identified a collection of proteins in the secretome and within the cell that are regulated by USP19, which link USP19 to secretion of lysosomal proteins, including LGMN.

3.
J Transl Med ; 22(1): 816, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223664

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons and the accumulation of Lewy-body protein aggregates containing misfolded α-synuclein (α-syn) in a phosphorylated form. The lack of effective models for drug screens has hindered drug development studies for PD. However, the recent development of in vitro brain-like organoids provides a new opportunity for evaluating therapeutic agents to slow the progression of this chronic disease. METHODS: In this study, we used a 3D brain-like organoid model to investigate the potential of repurposing Tilorone, an anti-viral drug, for impeding the propagation of α-synucleinopathy. We assessed the effect of Tilorone on the uptake of fluorescently labeled α-syn preformed fibrils (sPFF) and sPFF-induced apoptosis using confocal microscopy. We also examined Tilorone's impact on the phosphorylation of endogenous α-syn induced by pathogenic sPFF by immunoblotting midbrain-like organoid extracts. Additionally, quantitative RT-PCR and proteomic profiling of sPFF-treated organoids were conducted to evaluate the global impact of Tilorone treatment on tissue homeostasis in the 3D organoid model. RESULTS: Tilorone inhibits the uptake of sPFF in both mouse primary neurons and human midbrain-like organoids. Tilorone also reduces the phosphorylation of endogenous α-syn induced by pathogenic α-syn fibrils and mitigates α-syn fibril-induced apoptosis in midbrain-like organoids. Proteomic profiling of fibril-treated organoids reveals substantial alterations in lipid homeostasis by α-syn fibrils, which are reversed by Tilorone treatment. Given its safety profile in clinics, Tilorone may be further developed as a therapeutic intervention to alleviate the propagation of synucleinopathy in PD patients.


Asunto(s)
Mesencéfalo , Organoides , Sinucleinopatías , alfa-Sinucleína , Mesencéfalo/patología , Mesencéfalo/efectos de los fármacos , Mesencéfalo/metabolismo , Organoides/efectos de los fármacos , Organoides/metabolismo , Organoides/patología , Humanos , alfa-Sinucleína/metabolismo , Sinucleinopatías/patología , Sinucleinopatías/metabolismo , Sinucleinopatías/tratamiento farmacológico , Fosforilación/efectos de los fármacos , Modelos Biológicos , Apoptosis/efectos de los fármacos , Animales , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Ratones , Proteómica
4.
Proc Natl Acad Sci U S A ; 117(20): 10865-10875, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32366666

RESUMEN

Cell-to-cell transmission of misfolding-prone α-synuclein (α-Syn) has emerged as a key pathological event in Parkinson's disease. This process is initiated when α-Syn-bearing fibrils enter cells via clathrin-mediated endocytosis, but the underlying mechanisms are unclear. Using a CRISPR-mediated knockout screen, we identify SLC35B2 and myosin-7B (MYO7B) as critical endocytosis regulators for α-Syn preformed fibrils (PFFs). We show that SLC35B2, as a key regulator of heparan sulfate proteoglycan (HSPG) biosynthesis, is essential for recruiting α-Syn PFFs to the cell surface because this process is mediated by interactions between negatively charged sugar moieties of HSPGs and clustered K-T-K motifs in α-Syn PFFs. By contrast, MYO7B regulates α-Syn PFF cell entry by maintaining a plasma membrane-associated actin network that controls membrane dynamics. Without MYO7B or actin filaments, many clathrin-coated pits fail to be severed from the membrane, causing accumulation of large clathrin-containing "scars" on the cell surface. Intriguingly, the requirement for MYO7B in endocytosis is restricted to α-Syn PFFs and other polycation-bearing cargos that enter cells via HSPGs. Thus, our study not only defines regulatory factors for α-Syn PFF endocytosis, but also reveals a previously unknown endocytosis mechanism for HSPG-binding cargos in general, which requires forces generated by MYO7B and actin filaments.


Asunto(s)
Endocitosis/fisiología , Miosinas/química , Miosinas/metabolismo , Polielectrolitos/metabolismo , alfa-Sinucleína/metabolismo , Línea Celular , Clatrina/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Modelos Moleculares , Enfermedad de Parkinson/metabolismo , Conformación Proteica , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
5.
J Chem Inf Model ; 62(8): 1988-1997, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35404596

RESUMEN

The cell entry of SARS-CoV-2 has emerged as an attractive drug development target. We previously reported that the entry of SARS-CoV-2 depends on the cell surface heparan sulfate proteoglycan (HSPG) and the cortex actin, which can be targeted by therapeutic agents identified by conventional drug repurposing screens. However, this drug identification strategy requires laborious library screening, which is time consuming, and often limited number of compounds can be screened. As an alternative approach, we developed and trained a graph convolutional network (GCN)-based classification model using information extracted from experimentally identified HSPG and actin inhibitors. This method allowed us to virtually screen 170,000 compounds, resulting in ∼2000 potential hits. A hit confirmation assay with the uptake of a fluorescently labeled HSPG cargo further shortlisted 256 active compounds. Among them, 16 compounds had modest to strong inhibitory activities against the entry of SARS-CoV-2 pseudotyped particles into Vero E6 cells. These results establish a GCN-based virtual screen workflow for rapid identification of new small molecule inhibitors against validated drug targets.


Asunto(s)
Antivirales , SARS-CoV-2 , Internalización del Virus , Actinas , Antivirales/química , Proteoglicanos de Heparán Sulfato , Humanos , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
6.
Nat Rev Mol Cell Biol ; 10(11): 755-64, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19851334

RESUMEN

The modification of proteins with ubiquitin chains can change their localization, activity and/or stability. Although ubiquitylation requires the concerted action of ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s), it is the E2s that have recently emerged as key mediators of chain assembly. These enzymes are able to govern the switch from ubiquitin chain initiation to elongation, regulate the processivity of chain formation and establish the topology of assembled chains, thereby determining the consequences of ubiquitylation for the modified proteins.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras/fisiología , Ubiquitina/metabolismo , Animales , Humanos
7.
Semin Cell Dev Biol ; 83: 29-35, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29549062

RESUMEN

Secretion of proteins lacking leader sequence was deemed rare and unconventional, only accountable for the export of a limited number of clients by mechanisms that are poorly defined. However, recent studies have shown that many leaderless proteins misfolded in the cytoplasm can be selectively exported to extracellular milieu via an unconventional secretory path termed Misfolding-Associated Protein Secretion (MAPS). This process uses the surface of the endoplasmic reticulum (ER) as a platform to enrich abnormally folded polypeptides, and then transport them into the lumen of ER-associated late endosomes for subsequent secretion. Elimination of misfolded proteins via MAPS appears to serve a role in protein homeostasis maintenance, particularly for stressed cells bearing an excess of protein quality control (PQC) burden.


Asunto(s)
Homeostasis/fisiología , Transporte de Proteínas/fisiología , Proteínas/metabolismo , Proteostasis/fisiología , Animales , Humanos , Pliegue de Proteína
8.
Proc Natl Acad Sci U S A ; 114(44): 11679-11684, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29042515

RESUMEN

The metazoan protein BCL2-associated athanogene cochaperone 6 (Bag6) forms a hetero-trimeric complex with ubiquitin-like 4A and transmembrane domain recognition complex 35 (TRC35). This Bag6 complex is involved in tail-anchored protein targeting and various protein quality-control pathways in the cytosol as well as regulating transcription and histone methylation in the nucleus. Here we present a crystal structure of Bag6 and its cytoplasmic retention factor TRC35, revealing that TRC35 is remarkably conserved throughout the opisthokont lineage except at the C-terminal Bag6-binding groove, which evolved to accommodate Bag6, a unique metazoan factor. While TRC35 and its fungal homolog, guided entry of tail-anchored protein 4 (Get4), utilize a conserved hydrophobic patch to bind their respective partners, Bag6 wraps around TRC35 on the opposite face relative to the Get4-5 interface. We further demonstrate that TRC35 binding is critical not only for occluding the Bag6 nuclear localization sequence from karyopherin α to retain Bag6 in the cytosol but also for preventing TRC35 from succumbing to RNF126-mediated ubiquitylation and degradation. The results provide a mechanism for regulation of Bag6 nuclear localization and the functional integrity of the Bag6 complex in the cytosol.


Asunto(s)
Chaperonas Moleculares/química , Transporte de Proteínas/fisiología , Secuencia de Aminoácidos , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Chaperonas Moleculares/metabolismo , Mutación , Filogenia , Unión Proteica , Dominios Proteicos , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , alfa Carioferinas/química , alfa Carioferinas/metabolismo
9.
Proc Natl Acad Sci U S A ; 114(39): E8224-E8233, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28894007

RESUMEN

Rab GTPases are switched from their GDP-bound inactive conformation to a GTP-bound active state by guanine nucleotide exchange factors (GEFs). The first putative GEFs isolated for Rabs are RABIF (Rab-interacting factor)/MSS4 (mammalian suppressor of Sec4) and its yeast homolog DSS4 (dominant suppressor of Sec4). However, the biological function and molecular mechanism of these molecules remained unclear. In a genome-wide CRISPR genetic screen, we isolated RABIF as a positive regulator of exocytosis. Knockout of RABIF severely impaired insulin-stimulated GLUT4 exocytosis in adipocytes. Unexpectedly, we discovered that RABIF does not function as a GEF, as previously assumed. Instead, RABIF promotes the stability of Rab10, a key Rab in GLUT4 exocytosis. In the absence of RABIF, Rab10 can be efficiently synthesized but is rapidly degraded by the proteasome, leading to exocytosis defects. Strikingly, restoration of Rab10 expression rescues exocytosis defects, bypassing the requirement for RABIF. These findings reveal a crucial role of RABIF in vesicle transport and establish RABIF as a Rab-stabilizing holdase chaperone, a previously unrecognized mode of Rab regulation independent of its GDP-releasing activity. Besides Rab10, RABIF also regulates the stability of two other Rab GTPases, Rab8 and Rab13, suggesting that the requirement of holdase chaperones is likely a general feature of Rab GTPases.


Asunto(s)
Exocitosis/fisiología , Transportador de Glucosa de Tipo 4/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Chaperonas Moleculares/metabolismo , Transporte de Proteínas/fisiología , Adipocitos/metabolismo , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Células HeLa , Humanos , Ratones , Vesículas Transportadoras/fisiología , Proteínas de Unión al GTP rab/metabolismo
10.
J Biol Chem ; 293(37): 14359-14370, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30072379

RESUMEN

In eukaryotic cells, elimination of misfolded proteins is essential for maintaining protein homeostasis and cell viability. Misfolding-associated protein secretion (MAPS) is a protein quality-control mechanism that exports misfolded cytosolic proteins via a compartment characteristic of late endosomes, but how cytosolic proteins enter this compartment is unclear. Because chaperone-mediated autophagy (CMA) is a known mechanism that imports cytosolic proteins bearing a specific CMA motif to lysosomes for degradation and because late endosomes and lysosomes overlap significantly in mammalian cells, we determined here whether CMA is involved in targeting protein cargoes to the lumen of late endosomes in MAPS. Using HEK293T and COS-7 cells and immunoblotting and -staining and coimmunoprecipitation methods, we show that, unlike CMA, the secretion of misfolded proteins in MAPS does not require cargo unfolding, is inhibited by serum starvation, and is not dependent on the CMA motif in cargo. Intriguingly, knockdown of lysosome-associated membrane protein 2 (LAMP2), which consists of three isoforms, including a variant proposed to form a protein channel on lysosomes for CMA, attenuated MAPS. However, this could not be attributed to the proposed channel function of the LAMP2a isoform because overexpression of a cytosolic MAPS stimulator, DnaJ heat shock protein family (Hsp40) member C5 (DNAJC5), fully rescued the secretion defect associated with LAMP2 deficiency. We conclude that, in MAPS, cargoes use a CMA-independent mechanism to enter a nondegradative prelysosomal compartment.


Asunto(s)
Autofagia/fisiología , Citosol/metabolismo , Chaperonas Moleculares/metabolismo , Animales , Células COS , Chlorocebus aethiops , Medio de Cultivo Libre de Suero , Ensayo de Inmunoadsorción Enzimática , Células HEK293 , Humanos , Operón Lac , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo , Chaperonas Moleculares/fisiología , Pliegue de Proteína , Especificidad por Sustrato
11.
Mol Cell ; 44(1): 3-4, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21981912

RESUMEN

In this issue of Molecular Cell, Raman et al. (2011) and Franz et al. (2011) establish the AAA ATPase CDC-48/p97 as an essential regulator of eukaryotic DNA replication that coordinates the release of chromatin-bound CDT1 with its degradation by the proteasome.

12.
Mol Cell ; 42(6): 758-70, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21636303

RESUMEN

Endoplasmic reticulum-associated degradation (ERAD) employs membrane-bound ubiquitin ligases and the translocation-driving ATPase p97 to retrotranslocate misfolded proteins for proteasomal degradation. How retrotranslocated polypeptides bearing exposed hydrophobic motifs or transmembrane domains (TMDs) avoid aggregation before reaching the proteasome is unclear. Here we identify a ubiquitin ligase-associated multiprotein complex comprising Bag6, Ubl4A, and Trc35, which chaperones retrotranslocated polypeptides en route to the proteasome to improve ERAD efficiency. In vitro, Bag6, the central component of the complex, contains a chaperone-like activity capable of maintaining an aggregation-prone substrate in an unfolded yet soluble state. The physiological importance of this holdase activity is underscored by observations that ERAD substrates accumulate in detergent-insoluble aggregates in cells depleted of Bag6, or of Trc35, a cofactor that keeps Bag6 outside the nucleus for engagement in ERAD. Our results reveal a ubiquitin ligase-associated holdase that maintains polypeptide solubility to enhance protein quality control in mammalian cells.


Asunto(s)
Retículo Endoplásmico/metabolismo , Chaperonas Moleculares/metabolismo , Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células HEK293 , Humanos , Chaperonas Moleculares/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas de Unión al ARN/metabolismo , Solubilidad , Proteínas Virales/metabolismo
13.
J Biol Chem ; 292(39): 16310-16320, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28821611

RESUMEN

Oxidative stress has been implicated in multiple human neurological and other disorders. Proteasomes are multi-subunit proteases critical for the removal of oxidatively damaged proteins. To understand stress-associated human pathologies, it is important to uncover the molecular events underlying the regulation of proteasomes upon oxidative stress. To this end, we investigated H2O2 stress-induced molecular changes of the human 26S proteasome and determined that stress-induced 26S proteasome disassembly is conserved from yeast to human. Moreover, we developed and employed a new proteomic approach, XAP (in vivo cross-linking-assisted affinity purification), coupled with stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative MS, to capture and quantify several weakly bound proteasome-interacting proteins and examine their roles in stress-mediated proteasomal remodeling. Our results indicate that the adapter protein Ecm29 is the main proteasome-interacting protein responsible for stress-triggered remodeling of the 26S proteasome in human cells. Importantly, using a disuccinimidyl sulfoxide-based cross-linking MS platform, we mapped the interactions of Ecm29 within itself and with proteasome subunits and determined the architecture of the Ecm29-proteasome complex with integrative structure modeling. These results enabled us to propose a structural model in which Ecm29 intrudes on the interaction between the 20S core particle and the 19S regulatory particle in the 26S proteasome, disrupting the proteasome structure in response to oxidative stress.


Asunto(s)
Modelos Moleculares , Estrés Oxidativo , Complejo de la Endopetidasa Proteasomal/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Marcadores de Afinidad , Reactivos de Enlaces Cruzados/farmacología , Células HEK293 , Humanos , Marcaje Isotópico , Proteínas con Dominio LIM/química , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteolisis , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Espectrometría de Masas en Tándem , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitinas/química , Ubiquitinas/genética , Ubiquitinas/metabolismo
14.
EMBO J ; 33(1): 46-61, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24366945

RESUMEN

Cellular adaptation to proteotoxic stress at the endoplasmic reticulum (ER) depends on Lys48-linked polyubiquitination by ER-associated ubiquitin ligases (E3s) and subsequent elimination of ubiquitinated retrotranslocation products by the proteasome. The ER-associated E3 gp78 ubiquitinates misfolded proteins by transferring preformed Lys48-linked ubiquitin chains from the cognate E2 Ube2g2 to substrates. Here we demonstrate that Ube2g2 synthesizes linkage specific ubiquitin chains by forming an unprecedented homodimer: The dimerization of Ube2g2, mediated primarily by electrostatic interactions between two Ube2g2s, is also facilitated by the charged ubiquitin molecules. Mutagenesis studies show that Ube2g2 dimerization is required for ER-associated degradation (ERAD). In addition to E2 dimerization, we show that a highly conserved arginine residue in the donor Ube2g2 senses the presence of an aspartate in the acceptor ubiquitin to position only Lys48 of ubiquitin in proximity to the donor E2 active site. These results reveal an unanticipated mode of E2 self-association that allows the E2 to effectively engage two ubiquitins to specifically synthesize Lys48-linked ubiquitin chains.


Asunto(s)
Poliubiquitina/biosíntesis , Multimerización de Proteína , Enzimas Ubiquitina-Conjugadoras/metabolismo , Secuencia de Aminoácidos , Línea Celular , Análisis Mutacional de ADN , Humanos , Lisina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Conformación Proteica , Enzimas Ubiquitina-Conjugadoras/genética
15.
Proc Natl Acad Sci U S A ; 112(1): 106-11, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25535373

RESUMEN

BCL2-associated athanogene cochaperone 6 (Bag6) plays a central role in cellular homeostasis in a diverse array of processes and is part of the heterotrimeric Bag6 complex, which also includes ubiquitin-like 4A (Ubl4A) and transmembrane domain recognition complex 35 (TRC35). This complex recently has been shown to be important in the TRC pathway, the mislocalized protein degradation pathway, and the endoplasmic reticulum-associated degradation pathway. Here we define the architecture of the Bag6 complex, demonstrating that both TRC35 and Ubl4A have distinct C-terminal binding sites on Bag6 defining a minimal Bag6 complex. A crystal structure of the Bag6-Ubl4A dimer demonstrates that Bag6-BAG is not a canonical BAG domain, and this finding is substantiated biochemically. Remarkably, the minimal Bag6 complex defined here facilitates tail-anchored substrate transfer from small glutamine-rich tetratricopeptide repeat-containing protein α to TRC40. These findings provide structural insight into the complex network of proteins coordinated by Bag6.


Asunto(s)
Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Ubiquitinas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Núcleo Celular/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Señales de Localización Nuclear , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Homología Estructural de Proteína , Relación Estructura-Actividad , Técnicas del Sistema de Dos Híbridos , Ubiquitinas/química
16.
J Biol Chem ; 291(35): 18252-62, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27387505

RESUMEN

The endoplasmic reticulum (ER) network comprises sheets and tubules that are connected by dynamic three-way junctions. Lunapark (Lnp) localizes to and stabilizes ER three-way junctions by antagonizing the small GTPase Atlastin, but how Lnp shapes the ER network is unclear. Here, we used an affinity purification approach and mass spectrometry to identify Lnp as an interacting partner of the ER protein quality control ubiquitin ligase gp78. Accordingly, Lnp purified from mammalian cells has a ubiquitin ligase activity in vitro Intriguingly, biochemical analyses show that this activity can be attributed not only to associated ubiquitin ligase, but also to an intrinsic ubiquitin ligase activity borne by Lnp itself. This activity is contained in the N-terminal 45 amino acids of Lnp although this segment does not share homology to any known ubiquitin ligase motifs. Despite its interaction with gp78, Lnp does not seem to have a broad function in degradation of misfolded ER proteins. On the other hand, the N-terminal ubiquitin ligase-bearing motif is required for the ER three-way junction localization of Lnp. Our study identifies a new type of ubiquitin ligase and reveals a potential link between ubiquitin and ER morphology regulation.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de Homeodominio/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo , Secuencias de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Retículo Endoplásmico/genética , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Células HeLa , Proteínas de Homeodominio/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Transporte de Proteínas , Receptores del Factor Autocrino de Motilidad/genética
17.
J Cell Sci ; 127(Pt 7): 1417-27, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24496447

RESUMEN

A large number of studies have focused on how individual organisms respond to a stress condition, but little attention has been paid to the stress recovery process, such as the endoplasmic reticulum (ER) stress recovery. Homocysteine-induced ER protein (HERP) was originally identified as a chaperone-like protein that is strongly induced upon ER stress. Here we show that, after ER stress induction, HERP is rapidly degraded by Ube2g2-gp78-mediated ubiquitylation and proteasomal degradation. The polyubiquitylation of HERP in vitro depends on a physical interaction between the CUE domain of gp78 and the ubiquitin-like (UBL) domain of HERP, which is essential for HERP degradation in vivo during ER stress recovery. We further show that although HERP promotes cell survival under ER stress, high levels of HERP expression reduce cell viability under oxidative stress conditions, suggesting that HERP plays a dual role in cellular stress adaptation. Together, these results establish the ubiquitin-proteasome-mediated degradation of HERP as a novel mechanism that fine-tunes the stress tolerance capacity of the cell.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Proteínas de la Membrana/farmacología , Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Células Cultivadas , Estrés del Retículo Endoplásmico/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitinación
18.
Bioorg Med Chem Lett ; 26(21): 5177-5181, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27729187

RESUMEN

Inhibition of p97 (also known as valosin-containing protein (VCP)), has been validated as a promising strategy for cancer therapy. Eeyarestatin I (EerI) blocks p97 through a novel mechanism of action and has favorable anti-cancer activities against cultured cancer cells. However, its poor aqueous solubility severely limits its in vivo applications. To circumvent this problem, we have identified EerI derivatives that possess improved aqueous solubility by introducing a single solubilizing group. These modified compounds preserved endoplasmic reticulum (ER) stress-inducing and antiproliferative activities as well as generally good in vitro metabolic properties, suggesting that these EerI derivatives could serve as candidates for further optimization.


Asunto(s)
Hidrazonas/química , Hidroxiurea/análogos & derivados , Factor de Transcripción Activador 3/metabolismo , Factor de Transcripción Activador 4/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Humanos , Hidrazonas/farmacología , Hidroxiurea/química , Hidroxiurea/farmacología , Ratones , Solubilidad , Agua/química
19.
J Biol Chem ; 289(6): 3510-7, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24356957

RESUMEN

Deubiquitinating enzymes (DUBs) regulate various cellular processes ranging from protein degradation to cellular signaling. USP19, the only DUB containing a carboxyl-terminal transmembrane domain, was proposed to function in endoplasmic reticulum-associated degradation (ERAD). Here we characterize the function and regulation of USP19. We identify Hsp90 as a specific partner that binds the catalytic domain of USP19 to promote substrate association. Intriguingly, although overexpressed USP19 interacts with Derlin-1 and other ERAD machinery factors in the membrane, endogenous USP19 is mostly in the cytosol where it binds Hsp90. Accordingly, we detect neither interaction of endogenous USP19 with Derlin-1 nor significant effect on ERAD by USP19 depletion. The USP19 transmembrane domain appears to be partially stabilized in the cytosol by an interaction with its own catalytic domain, resulting in auto-inhibition of its deubiquitinating activity. These results clarify the role of USP19 in ERAD and suggest a novel DUB regulation that involves chaperone association and membrane integration. Moreover, our study indicates that the localization of tail-anchored membrane proteins can be subject to regulation in cells.


Asunto(s)
Endopeptidasas/metabolismo , Degradación Asociada con el Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Ubiquitinación/fisiología , Endopeptidasas/genética , Retículo Endoplásmico/genética , Estabilidad de Enzimas/fisiología , Células HEK293 , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Estructura Terciaria de Proteína
20.
J Biol Chem ; 289(7): 4444-54, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24366871

RESUMEN

Misfolded proteins of the endoplasmic reticulum (ER) are retrotranslocated to the cytosol and degraded by the proteasome via a process termed ER-associated degradation (ERAD). The precise mechanism of retrotranslocation is unclear. Here, we use several lumenal ERAD substrates targeted for degradation by the ubiquitin ligase HRD1 including SHH (sonic hedgehog) and NHK (null Hong Kong α1-antitrypsin) to study the geometry, organization, and regulation of the HRD1-containing ERAD machinery. We report a new HRD1-associated membrane protein named HERP2, which is homologous to the previously identified HRD1 partner HERP1. Despite sequence homology, HERP2 is constitutively expressed in cells, whereas HERP1 is highly induced by ER stress. We find that these proteins are required for efficient degradation of both glycosylated and nonglycosylated SHH proteins as well as NHK. In cells depleted of HERPs, SHH proteins are largely trapped inside the ER with a fraction of the stabilized SHH protein bound to the HRD1-SEL1L ligase complex. Ubiquitination of SHH is significantly attenuated in the absence of HERPs, suggesting a defect in retrotranslocation. Both HERP proteins interact with HRD1 through a region located in the cytosol. However, unlike its homolog in Saccharomyces cerevisiae, HERPs do not regulate HRD1 stability or oligomerization status. Instead, they help recruit DERL2 to the HRD1-SEL1L complex. Additionally, the UBL domain of HERP1 also seems to have a function independent of DERL2 recruitment in ERAD. Our studies have revealed a critical scaffolding function for mammalian HERP proteins that is required for forming an active retrotranslocation complex containing HRD1, SEL1L, and DERL2.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Degradación Asociada con el Retículo Endoplásmico/fisiología , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular Tumoral , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Estabilidad Proteica , Proteínas/genética , Proteínas/metabolismo , Proteínas Represoras/genética , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA