Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 225: 112800, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34547661

RESUMEN

Phytochelatins are plants' small metal-binding peptides which chelate internal heavy metals to form nontoxic complexes. Detecting the complexes in plants would simplify identification of cultivars with both high tolerance and enrichment capabilities for heavy metals which represent phytoextraction performance. Thus, a terahertz spectroscopy combined with density functional theory, chemometrics and circular dichroism was used for characterization of phytochelatin2 (PC2), Cd-PC2 mixture standards, and pak choi (Brassica chinensis) leaves as a plant model. Results showed PC2 chelates Cd2+ in a 2:1 ratio to form Cd(PC2)2 complex; Cd connected to thoils of PC2 and changed ß-turn and random coil of PC2 peptide chain to ß-Sheet which presented as terahertz vibrations of PC2 around 1.03 and 1.71 THz being suppressed; the best models for detecting the complex in pak choi were obtained by partial least squares regression modeling combined with successive projections algorithm selection; the models used PC2 as a natural probe for visualizing and quantifying chelated Cd in pak choi leaf and achieved a limit of detection up to 1.151 ppm. This study suggested that terahertz information of the heavy metal-PCs complexes is qualified for representing a simpler alternative to classical index for evaluating phytoextraction performance of plant; it provided a general protocol for structure analysis and detection of heavy metal-PCs complexes in plant by terahertz absorbance.


Asunto(s)
Brassica , Metales Pesados , Cadmio , Dicroismo Circular , Fitoquelatinas
2.
J Hazard Mater ; 464: 132954, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-37972496

RESUMEN

Short chain chlorinated paraffins (SCCPs) are ubiquitous persistent organic pollutants. They have been widely detected in plant-based foods and might cause adverse impacts on humans. Nevertheless, uptake and accumulation mechanisms of SCCPs in plants remain unclear. In this study, the soil culture data indicated that SCCPs were strongly absorbed by roots (root concentration factor, RCF>1) yet limited translocated to shoots (translocation factor<1). The uptake mechanism was explored by hydroponic exposure, showing that hydrophobicity and molecular size influenced the root uptake and translocation of SCCPs. RCFs were significantly correlated with logKow values and molecular weights in a parabolic curve relationship. Besides, it was extremely difficult for SCCPs to translocate from shoots back to roots via phloem. An active energy-dependent process was proposed to be involved in the root uptake of SCCPs, which was supported by the uptake inhibition by the low temperature and metabolic inhibitor. Though SCCPs at environmentally relevant concentrations had no negative impacts on root morphology and chlorophyll contents, it caused obvious changes in cellular ultrastructure of root tip cells and induced a significant increase in superoxide dismutase activity. This information may be beneficial to moderate crop contamination by SCCPs, and to remedy soils polluted by SCCPs with plants.


Asunto(s)
Hidrocarburos Clorados , Triticum , Humanos , Parafina/química , Monitoreo del Ambiente , Hidrocarburos Clorados/análisis , Transporte Biológico , Suelo/química , China
3.
J Hazard Mater ; 427: 128152, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35033726

RESUMEN

Plants synthesize phytochelatins to chelate in vivo toxic heavy metal ions and produce nontoxic complexes for tolerating the stress. Detection of the complexes would simplify the identification of high phytoremediation cultivars, as well as assessment of plant food for safe consumption. Thus, a confocal Raman spectroscopy combined with density functional theory and deep learning was used for characterizing phytochelatin2 (PC2), and Cd-PC2 mixtures. Results showed the PC2 chelate Cd2+ in a 2:1 ratio to produce Cd(PC2)2; Cd-S bonds of the Cd(PC2)2 have signature Raman vibrations at 305 and 610 cm-1 which are the most distinctive spectral signatures for varieties of Cd-PCs complexes. The PC2 was used as a natural probe to stabilize the chemical status of Cd, and to enrich and magnify Raman signature of the trace Cd for deep learning models which enabled condition of the Cd(PC2)2 in pak choi leaf to be visualized, quantified, and classified by directly using raw spectra of the leaf. This study provides a general protocol by using Raman information for structure analysis and non-invasive detection of heavy metal-PCs complexes in plants and provides a novel idea for simplifying identification of high phytoremediation cultivars, as well as assessment of heavy metal related food safeties.


Asunto(s)
Aprendizaje Profundo , Metales Pesados , Cadmio , Fitoquelatinas , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA