Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38944415

RESUMEN

Corynebacterium glutamicum ATCC 13032 is a promising microbial chassis for industrial production of valuable compounds, including aromatic amino acids derived from the shikimate pathway. In this work, we developed two whole-cell, transcription factor based fluorescent biosensors to track cis,cis-muconic acid (ccMA) and chorismate in C. glutamicum. Chorismate is a key intermediate in the shikimate pathway from which value-added chemicals can be produced, and a shunt from the shikimate pathway can divert carbon to ccMA, a high value chemical. We transferred a ccMA-inducible transcription factor, CatM, from Acinetobacter baylyi ADP1 into C. glutamicum and screened a promoter library to isolate variants with high sensitivity and dynamic range to ccMA by providing benzoate, which is converted to ccMA intracellularly. The biosensor also detected exogenously supplied ccMA, suggesting the presence of a putative ccMA transporter in C. glutamicum, though the external ccMA concentration threshold to elicit a response was 100-fold higher than the concentration of benzoate required to do so through intracellular ccMA production. We then developed a chorismate biosensor, in which a chorismate inducible promoter regulated by natively expressed QsuR was optimized to exhibit a dose-dependent response to exogenously supplemented quinate (a chorismate precursor). A chorismate-pyruvate lyase encoding gene, ubiC, was introduced into C. glutamicum to lower the intracellular chorismate pool, which resulted in loss of dose dependence to quinate. Further, a knockout strain that blocked the conversion of quinate to chorismate also resulted in absence of dose dependence to quinate, validating that the chorismate biosensor is specific to intracellular chorismate pool. The ccMA and chorismate biosensors were dually inserted into C. glutamicum to simultaneously detect intracellularly produced chorismate and ccMA. Biosensors, such as those developed in this study, can be applied in C. glutamicum for multiplex sensing to expedite pathway design and optimization through metabolic engineering in this promising chassis organism. ONE-SENTENCE SUMMARY: High-throughput screening of promoter libraries in Corynebacterium glutamicum to establish transcription factor based biosensors for key metabolic intermediates in shikimate and ß-ketoadipate pathways.


Asunto(s)
Técnicas Biosensibles , Ácido Corísmico , Corynebacterium glutamicum , Ácido Sórbico , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Técnicas Biosensibles/métodos , Ácido Sórbico/metabolismo , Ácido Sórbico/análogos & derivados , Ácido Corísmico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Acinetobacter/metabolismo , Acinetobacter/genética
2.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161271

RESUMEN

Desert varnish is a dark rock coating that forms in arid environments worldwide. It is highly and selectively enriched in manganese, the mechanism for which has been a long-standing geological mystery. We collected varnish samples from diverse sites across the western United States, examined them in petrographic thin section using microscale chemical imaging techniques, and investigated the associated microbial communities using 16S amplicon and shotgun metagenomic DNA sequencing. Our analyses described a material governed by sunlight, water, and manganese redox cycling that hosts an unusually aerobic microbial ecosystem characterized by a remarkable abundance of photosynthetic Cyanobacteria in the genus Chroococcidiopsis as the major autotrophic constituent. We then showed that diverse Cyanobacteria, including the relevant Chroococcidiopsis taxon, accumulate extraordinary amounts of intracellular manganese-over two orders of magnitude higher manganese content than other cells. The speciation of this manganese determined by advanced paramagnetic resonance techniques suggested that the Cyanobacteria use it as a catalytic antioxidant-a valuable adaptation for coping with the substantial oxidative stress present in this environment. Taken together, these results indicated that the manganese enrichment in varnish is related to its specific uptake and use by likely founding members of varnish microbial communities.


Asunto(s)
Fenómenos Ecológicos y Ambientales , Sedimentos Geológicos/química , Manganeso/análisis , Antioxidantes/metabolismo , Cianobacterias/metabolismo , Sedimentos Geológicos/microbiología , Microbiota , Oxidación-Reducción , Luz Solar , Agua
3.
Environ Sci Technol ; 53(21): 12416-12424, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31553176

RESUMEN

Iodine-129 is one of three key risk drivers at several US Department of Energy waste management sites. Natural organic matter (NOM) is thought to play important roles in the immobilization of aqueous iodide (I-) and iodate (IO3-) in the environment, but molecular interactions between NOM and iodine species are poorly understood. In this work, we investigated iodine and carbon speciation in three humic acid (HA)-I systems using I K-edge XANES and EXAFS and C K-edge XANES spectroscopy: (1) I- in the presence of laccase (an oxidase enzyme) and a mediator, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in a pH 4 buffer, (2) I- in the presence of lactoperoxidase (LPO) and H2O2 in a pH 7 buffer, and (3) IO3- in a pH 3 groundwater. Both oxidase and peroxidase systems could oxidize I- to I2 or hypoiodide (HOI) leading to organo-I formation. However, the laccase-ABTS mediator was the most effective and enhanced I- uptake by HA up to 13.5 mg/g, compared to 1.9 mg/g for the LPO-H2O2. IO3- was abiotically reduced to I2 or HOI leading to an organo-I formation. Pathways for HA iodination include covalent modification of aromatic-type rings by I2 / HOI or iodine incorporation into newly formed benzoquinone species arising from the oxidation of phenolic C species. This study improves our molecular-level understanding of NOM-iodine interactions and stresses the important role that mediators may play in the enzymatic reactions between iodine and NOM.


Asunto(s)
Yoduros , Yodo , Sustancias Húmicas , Peróxido de Hidrógeno , Oxidación-Reducción , Espectroscopía de Absorción de Rayos X
4.
Appl Environ Microbiol ; 83(6)2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28087533

RESUMEN

Among the bacteria, members of the order Actinomycetales are considered quintessential degraders of complex polysaccharides in soils. However, studies examining complex polysaccharide degradation by Actinomycetales (other than Streptomyces spp.) in soils are limited. Here, we examine the lignocellulolytic and chitinolytic potential of 112 Actinomycetales strains, encompassing 13 families, isolated from a semiarid grassland of the Colorado Plateau in Utah. Members of the Streptomycetaceae, Pseudonocardiaceae, Micromonosporaceae, and Promicromonosporaceae families exhibited robust activity against carboxymethyl cellulose, xylan, chitin, and pectin substrates (except for low/no pectinase activity by the Micromonosporaceae). When incubated in a hydrated mixture of blended Stipa and Hilaria grass biomass over a 5-week period, Streptomyces and Saccharothrix (a member of the Pseudonocardiaceae) isolates produced high levels of extracellular enzyme activity, such as endo- and exocellulase, glucosidase, endo- and exoxylosidase, and arabinofuranosidase. These characteristics make them well suited to degrade the cellulose and hemicellulose components of grass cell walls. On the basis of the polysaccharide degradation profiles of the isolates, relative abundance of Actinomycetales sequences in 16S rRNA gene surveys of Colorado Plateau soils, and analysis of genes coding for polysaccharide-degrading enzymes among 237 Actinomycetales genomes in the CAZy database and 5 genomes from our isolates, we posit that Streptomyces spp. and select members of the Pseudonocardiaceae and Micromonosporaceae likely play an important role in the degradation of hemicellulose, cellulose, and chitin substances in dryland soils.IMPORTANCE Shifts in the relative abundance of Actinomycetales taxa have been observed in soil microbial community surveys during large, manipulated climate change field studies. However, our limited understanding of the ecophysiology of diverse Actinomycetales taxa in soil systems undermines attempts to determine the underlying causes of the population shifts or their impact on carbon cycling in soil. This study combines a systematic analysis of the polysaccharide degradation potential of a diverse collection of Actinomycetales isolates from surface soils of a semiarid grassland with analysis of genomes from five of these isolates and publicly available Actinomycetales genomes for genes encoding polysaccharide-active enzymes. The results address an important gap in knowledge of Actinomycetales ecophysiology-identification of key taxa capable of facilitating lignocellulose degradation in dryland soils. Information from this study will benefit future metagenomic studies related to carbon cycling in dryland soils by providing a baseline linkage of Actinomycetales phylogeny with lignocellulolytic functional potential.


Asunto(s)
Actinomycetales/metabolismo , Carboximetilcelulosa de Sodio/metabolismo , Quitina/metabolismo , Lignina/metabolismo , Pectinas/metabolismo , Polisacáridos/metabolismo , Xilanos/metabolismo , Actinomycetales/genética , Actinomycetales/aislamiento & purificación , Cambio Climático , Colorado , Pradera , Filogenia , ARN Ribosómico 16S/genética , Suelo/química , Microbiología del Suelo
5.
Adv Appl Microbiol ; 101: 83-136, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29050668

RESUMEN

Iodine is a biophilic element that is important for human health, both as an essential component of several thyroid hormones and, on the other hand, as a potential carcinogen in the form of radioiodine generated by anthropogenic nuclear activity. Iodine exists in multiple oxidation states (-1, 0, +1, +3, +5, and +7), primarily as molecular iodine (I2), iodide (I-), iodate [Formula: see text] , or organic iodine (org-I). The mobility of iodine in the environment is dependent on its speciation and a series of redox, complexation, sorption, precipitation, and microbial reactions. Over the last 15years, there have been significant advances in iodine biogeochemistry, largely spurred by renewed interest in the fate of radioiodine in the environment. We review the biogeochemistry of iodine, with particular emphasis on the microbial processes responsible for volatilization, accumulation, oxidation, and reduction of iodine, as well as the exciting technological potential of these fascinating microorganisms and enzymes.


Asunto(s)
Yodo/metabolismo , Interacciones Microbianas/fisiología , Humanos , Yodatos/química , Yodatos/metabolismo , Yoduros/química , Yoduros/metabolismo , Yodo/química , Yodo/deficiencia , Radioisótopos de Yodo/química , Radioisótopos de Yodo/metabolismo , Oxidación-Reducción , Volatilización
6.
Environ Sci Technol ; 51(20): 11742-11751, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-28933160

RESUMEN

In order to examine the influence of the HA molecular composition on the partitioning of Pu, ten different kinds of humic acids (HAs) of contrasting chemical composition, collected and extracted from different soil types around the world were equilibrated with groundwater at low Pu concentrations (10-14 M). Under mildly acidic conditions (pH ∼ 5.5), 29 ± 24% of the HAs were released as colloidal organic matter (>3 kDa to <0.45 µm), yet this HA fraction accounted for a vast majority of the bound Pu, 76 ± 13% on average. In comparison, the particulate HA fraction bound only 8 ± 4% on average of the added Pu. The truly dissolved Pu fraction was typically <1%. Pu binding was strongly and positively correlated with the concentrations of organic nitrogen in both particulate (>0.45 µm) and colloidal phases in terms of activity percentage and partitioning coefficient values (logKd). Based on molecular characterization of the HAs by solid state 13C nuclear magnetic resonance (NMR) and elemental analysis, Pu binding was correlated to the concentration of carboxylate functionalities and nitrogen groups in the particulate and colloidal phases. The much greater tendency of Pu to bind to colloidal HAs than to particulate HA has implications on whether NOM acts as a Pu source or sink during natural or man-induced episodic flooding.


Asunto(s)
Sustancias Húmicas , Plutonio , Contaminantes Radiactivos del Suelo , Compuestos Orgánicos , Suelo
7.
Appl Environ Microbiol ; 82(8): 2270-2279, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26826234

RESUMEN

Nitrosomonas europaea is an aerobic nitrifying bacterium that oxidizes ammonia (NH3) to nitrite (NO2 (-)) through the sequential activities of ammonia monooxygenase (AMO) and hydroxylamine dehydrogenase (HAO). Many alkynes are mechanism-based inactivators of AMO, and here we describe an activity-based protein profiling method for this enzyme using 1,7-octadiyne (17OD) as a probe. Inactivation of NH4 (+)-dependent O2 uptake by N. europaea by 17OD was time- and concentration-dependent. The effects of 17OD were specific for ammonia-oxidizing activity, andde novoprotein synthesis was required to reestablish this activity after cells were exposed to 17OD. Cells were reacted with Alexa Fluor 647 azide using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) (click) reaction, solubilized, and analyzed by SDS-PAGE and infrared (IR) scanning. A fluorescent 28-kDa polypeptide was observed for cells previously exposed to 17OD but not for cells treated with either allylthiourea or acetylene prior to exposure to 17OD or for cells not previously exposed to 17OD. The fluorescent polypeptide was membrane associated and aggregated when heated with ß-mercaptoethanol and SDS. The fluorescent polypeptide was also detected in cells pretreated with other diynes, but not in cells pretreated with structural homologs containing a single ethynyl functional group. The membrane fraction from 17OD-treated cells was conjugated with biotin-azide and solubilized in SDS. Streptavidin affinity-purified polypeptides were on-bead trypsin-digested, and amino acid sequences of the peptide fragments were determined by liquid chromatography-mass spectrometry (LC-MS) analysis. Peptide fragments from AmoA were the predominant peptides detected in 17OD-treated samples. In-gel digestion and matrix-assisted laser desorption ionization-tandem time of flight (MALDI-TOF/TOF) analyses also confirmed that the fluorescent 28-kDa polypeptide was AmoA.


Asunto(s)
Nitrosomonas europaea/enzimología , Oxidorreductasas/análisis , Proteoma/análisis , Aerobiosis , Amoníaco/metabolismo , Cromatografía Liquida , Espectrometría de Masas , Nitrosomonas europaea/química , Oxígeno/metabolismo
8.
Appl Environ Microbiol ; 80(10): 3103-12, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24610855

RESUMEN

Biological nitrogen fixation is the primary supply of N to most ecosystems, yet there is considerable uncertainty about how N-fixing bacteria will respond to global change factors such as increasing atmospheric CO2 and N deposition. Using the nifH gene as a molecular marker, we studied how the community structure of N-fixing soil bacteria from temperate pine, aspen, and sweet gum stands and a brackish tidal marsh responded to multiyear elevated CO2 conditions. We also examined how N availability, specifically, N fertilization, interacted with elevated CO2 to affect these communities in the temperate pine forest. Based on data from Sanger sequencing and quantitative PCR, the soil nifH composition in the three forest systems was dominated by species in the Geobacteraceae and, to a lesser extent, Alphaproteobacteria. The N-fixing-bacterial-community structure was subtly altered after 10 or more years of elevated atmospheric CO2, and the observed shifts differed in each biome. In the pine forest, N fertilization had a stronger effect on nifH community structure than elevated CO2 and suppressed the diversity and abundance of N-fixing bacteria under elevated atmospheric CO2 conditions. These results indicate that N-fixing bacteria have complex, interacting responses that will be important for understanding ecosystem productivity in a changing climate.


Asunto(s)
Bacterias/metabolismo , Dióxido de Carbono/análisis , Nitrógeno/metabolismo , Microbiología del Suelo , Aire/análisis , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Dióxido de Carbono/metabolismo , Clima , Ecosistema , Fertilizantes/análisis , Fijación del Nitrógeno , Suelo/química
9.
Appl Environ Microbiol ; 80(9): 2693-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24561582

RESUMEN

The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I(-)), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2(-)). In the absence of Mn(2+), Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 µM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments.


Asunto(s)
Yoduros/metabolismo , Manganeso/metabolismo , Roseobacter/metabolismo , Superóxidos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Oxidación-Reducción , Roseobacter/enzimología , Roseobacter/genética , Roseobacter/aislamiento & purificación , Agua de Mar/microbiología
10.
Environ Sci Technol ; 48(19): 11218-26, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25219373

RESUMEN

(129)I derived from a former radionuclide disposal basin located on the Savannah River Site (SRS) has concentrated in a wetland 600 m downstream. To evaluate temporal environmental influences on iodine speciation and mobility in this subtropical wetland environment, groundwater was collected over a three-year period (2010-2012) from a single location. Total (127)I and (129)I showed significant temporal variations, ranging from 68-196 nM for (127)I and <5-133 pCi/L for (129)I. These iodine isotopes were significantly correlated with groundwater acidity and nitrate, two parameters elevated within the contaminant plume. Additionally, (129)I levels were significantly correlated with those of (127)I, suggesting that biogeochemical controls on (127)I and (129)I are similar within the SRS aquifer/wetland system. Iodine speciation demonstrates temporal variations as well, reflecting effects from surface recharges followed by acidification of groundwater and subsequent formation of anaerobic conditions. Our results reveal a complex system where few single ancillary parameters changed in a systematic manner with iodine speciation. Instead, changes in groundwater chemistry and microbial activity, driven by surface hydrological events, interact to control iodine speciation and mobility. Future radiological risk models should consider the flux of (129)I in response to temporal changes in wetland hydrologic and chemical conditions.


Asunto(s)
Agua Subterránea/análisis , Radioisótopos de Yodo/análisis , Yodo/análisis , Ríos/química , Contaminantes Radiactivos del Agua/análisis , Agua Subterránea/química , Hidrología/métodos , Isótopos de Yodo/análisis , Modelos Teóricos , Factores de Riesgo , South Carolina , Humedales
11.
Isotopes Environ Health Stud ; : 1-18, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39431439

RESUMEN

Isotopic evidence of groundwater and stream water is frequently used to investigate water exchanges with groundwater. Monthly sampling of rain, stream water, and groundwater was conducted at Tims Branch watershed in South Carolina for the oxygen and hydrogen stable isotope (δ2H and δ18O) measurement, as well as pH and oxidation-reduction potential (ORP). Together with a mass balance perspective, it was determined that it takes a few weeks to one month for groundwater in the hyporheic zone to fully exchange with stream water. From hydrodynamic modelling, we show that substantial (up to 70 %) groundwater exchange occurs at gaining and losing sites. Groundwater exfiltration, i.e. inflow into stream water, contributes up to 4 % to stream water, with the remainder from upstream exfiltration. A 2-4 % per day renewal rate of adjacent groundwater would indirectly indicate a groundwater residence time in the order of half a month to a full month (assuming either a well-mixed case or large dispersion rate in pulse flow case), in agreement with a greatly reduced variability of δ2H and δ18O of groundwater compared to stream water and rain. This reduced variability of stable isotope signal from groundwater confirms our hypothesis that riparian groundwater mixing at Tims Branch is more of a mixed type rather than a pulse flow type. A monthly time scale is sufficient for groundwater to become anoxic at exit points into stream water resulting in the episodic production of natural organic matter- and iron-rich flocs upon oxidation.

12.
Sci Total Environ ; 948: 174867, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39032753

RESUMEN

Tims Branch riparian wetland located in South Carolina, USA has immobilized 94 % of the U released >50 years ago from a nuclear fuel fabrication facility. Sediment organic matter (OM) has been shown to play an important role in immobilizing U. Yet, uranium-OM-mineral interactions at the molecular scale have never been investigated at ambient concentrations. The objectives of this study were to extract, purify, and concentrate U-bound sediment OM along the stream water pathway and perform molecular characterization using Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). Out of 9614 identified formulas, 715 contained U. These U-containing formulas were enriched with Fe, N, and/or S compared to the total OM. Lignin-like and protein-like molecules accounted for 40 % and 19 % of the U-containing formulas, respectively. Phosphorus-containing formulas were found to exert an insignificant influence on complexing U. U-containing formulas in the 'mobile' (groundwater extractable) OM fraction had lower (reduced) nominal oxidation states of carbon (NOSC); and less aromatic moieties than OM recovered from the 'immobile' (sodium pyrophosphate extractable) OM fraction. U-containing formulas in the redox interfacial zones (stream banks) compared to those in nearby up-slope zones tended to have smaller molecular weights; lower NOSC; higher contents of COO and/or CONO functional groups; and higher abundance of Fe-containing formulas. Fe was present in 38 % of the U-containing formulas but only 20 % of the total OM formulas. It is postulated that Fe played an important role in stabilizing the structure of sedimentary OM, especially U-containing compounds. The identification for the first time of hundreds of Fe-U-OM formulas demonstrates the complexity of such system is much greater than commonly believed and numerically predicting U binding behavior in OM-rich systems may require greater use of statistical or artificial intelligence approaches rather than deterministic approaches limited to measuring metal complexation with well-defined individual analogue organic ligands.

13.
Environ Sci Technol ; 47(17): 9635-42, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23885783

RESUMEN

The geochemical transport and fate of radioiodine depends largely on its chemical speciation that is greatly affected by environmental factors. This study reports, for the first time, the speciation of stable and radioactive iodine in the groundwater from the Hanford Site. Iodate was the dominant species and accounted for up to 84% of the total iodine present. The alkaline pH (pH ∼ 8) and predominantly oxidizing environment may have prevented reduction of the iodate. In addition, groundwater samples were found to have large amounts of calcite precipitate which were likely formed as a result of CO2 degassing during removal from the deep subsurface (>70m depth). Further analyses indicated that between 7 and 40% of the dissolved (127)I and (129)I that was originally in the groundwater had coprecipitated in the calcite. Iodate was the main species incorporated into calcite and this incorporation process could be impeded by elevating the pH and decreasing ionic strength in groundwater. This study provides critical information for predicting the long-term fate and transport of (129)I. Furthermore, the common sampling artifact resulting in the precipitation of calcite by degassing CO2, had the unintended consequence of providing insight into a potential solution for the in situ remediation of groundwater (129)I.


Asunto(s)
Carbonato de Calcio/química , Agua Subterránea/análisis , Yodatos/química , Yodo/análisis , Contaminantes Radiactivos del Agua/análisis , Carbonato de Calcio/análisis , Carbonatos/análisis , Monitoreo del Ambiente , Cromatografía de Gases y Espectrometría de Masas , Concentración de Iones de Hidrógeno , Yodatos/análisis , Radioisótopos de Yodo/análisis , Oxígeno/análisis , Washingtón
14.
Polymers (Basel) ; 15(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36679315

RESUMEN

With the rapid pace of advancements in additive manufacturing and techniques such as fused filament fabrication (FFF), the feedstocks used in these techniques should advance as well. While available filaments can be used to print highly customizable parts, the creation of the end part is often the only function of a given feedstock. In this study, novel FFF filaments with inherent environmental sensing functionalities were created by melt-blending poly(lactic acid) (PLA), poly(ethylene glycol) (PEG), and pH indicator powders (bromothymol blue, phenolphthalein, and thymol blue). The new PLA-PEG-indicator filaments were universally more crystalline than the PLA-only filaments (33-41% vs. 19% crystallinity), but changes in thermal stability and mechanical characteristics depended upon the indicator used; filaments containing bromothymol blue and thymol blue were more thermally stable, had higher tensile strength, and were less ductile than PLA-only filaments, while filaments containing phenolphthalein were less thermally stable, had lower tensile strength, and were more ductile. When the indicator-filled filaments were exposed to acidic, neutral, and basic solutions, all filaments functioned as effective pH sensors, though the bromothymol blue-containing filament was only successful as a base indicator. The biodegradability of the new filaments was evaluated by characterizing filament samples after aging in soil and soil slurry mixtures; the amount of physical deterioration and changes in filament crystallinity suggested that the bromothymol blue filament degraded faster than PLA-only filaments, while the phenolphthalein and thymol blue filaments saw decreases in degradation rates.

15.
Front Chem ; 11: 1105641, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936531

RESUMEN

129I is a nuclear fission decay product of concern because of its long half-life (16 Ma) and propensity to bioaccumulate. Microorganisms impact iodine mobility in soil systems by promoting iodination (covalent binding) of soil organic matter through processes that are not fully understood. Here, we examined iodide uptake by soils collected at two depths (0-10 and 10-20 cm) from 5 deciduous and coniferous forests in Japan and the United States. Autoclaved soils, and soils amended with an enzyme inhibitor (sodium azide) or an antibacterial agent (bronopol), bound significantly less 125I tracer (93%, 81%, 61% decrease, respectively) than the untreated control soils, confirming a microbial role in soil iodide uptake. Correlation analyses identified the strongest significant correlation between 125I uptake and three explanatory variables, actinobacteria soil biomass (p = 6.04E-04, 1.35E-02 for Kendall-Tau and regression analysis, respectively), soil nitrogen content (p = 4.86E-04, 4.24E-03), and soil oxidase enzyme activity at pH 7.0 using the substrate L-DOPA (p = 2.83E-03, 4.33E-04) and at pH 5.5 using the ABTS (p = 5.09E-03, 3.14E-03). Together, the results suggest that extracellular oxidases, primarily of bacterial origin, are the primary catalyst for soil iodination in aerobic, surface soils of deciduous and coniferous forests, and that soil N content may be indicative of the availability of binding sites for reactive iodine species.

16.
J Environ Radioact ; 263: 107183, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37094504

RESUMEN

Grout materials are commonly used to immobilize low-level radioactive waste. Organic moieties can be unintentionally present in common ingredients used to make these grout waste forms, which may result in the formation of organo-radionuclide species. These species can positively or negatively affect the immobilization efficiency. However, the presence of organic carbon compounds is rarely considered in models or characterized chemically. Here, we quantify the organic pool of grout formulations with and without slag, as well as the individual dry ingredients used to make the grout samples (ordinary Portland cement (OPC), slag and fly ash), including total organic carbon (TOC) and black carbon, followed by aromaticity evaluation and molecular characterization via Electro Spray Ionization Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FTICRMS). All dry grout ingredients contained significant amounts of organic carbon, ranging from 550 mg/kg to 6250 mg/kg for the TOC pool, with an averaged abundance of 2933 ± 2537 mg/kg, of which 60 ± 29% was composed of black carbon. The significant abundance of a black carbon pool implies the presence of the aromatic-like compounds, which was further identified by both phosphate buffer-assisted aromaticity evaluation (e.g., >1000 mg-C/kg as aromatic-like carbon in the OPC) and dichloromethane (DCM) extraction with ESI-FTICRMS analysis. Besides aromatic-like compounds, other organic moieties were also detected in the OPC, such as carboxyl-containing aliphatic molecules. While the organic compound only consists of minor fractions of the grout materials investigated, our observations of the presence of various radionuclide-binding organic moieties suggests the potential formation of organo-radionuclides, such as radioiodine, which might be present at lower molar concentrations than TOC. Evaluating the role of organic carbon complexation in controlling the disposed radionuclides, especially for those radionuclides with strong association with organic carbon, has important implications for the long-term immobilization of radioactive waste in grout systems.


Asunto(s)
Monitoreo de Radiación , Residuos Radiactivos , Radioisótopos de Yodo/química , Carbono , Espectrometría de Masas
17.
Environ Microbiol ; 14(12): 3247-58, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23116182

RESUMEN

Biological soil crusts (biocrusts) cover soil surfaces in many drylands globally. The impacts of 10 years of elevated atmospheric CO2 on the cyanobacteria in biocrusts of an arid shrubland were examined at a large manipulated experiment in Nevada, USA. Cyanobacteria-specific quantitative PCR surveys of cyanobacteria small-subunit (SSU) rRNA genes suggested a reduction in biocrust cyanobacterial biomass in the elevated CO2 treatment relative to the ambient controls. Additionally, SSU rRNA gene libraries and shotgun metagenomes showed reduced representation of cyanobacteria in the total microbial community. Taxonomic composition of the cyanobacteria was similar under ambient and elevated CO2 conditions, indicating the decline was manifest across multiple cyanobacterial lineages. Recruitment of cyanobacteria sequences from replicate shotgun metagenomes to cyanobacterial genomes representing major biocrust orders also suggested decreased abundance of cyanobacteria sequences across the majority of genomes tested. Functional assignment of cyanobacteria-related shotgun metagenome sequences indicated that four subsystem categories, three related to oxidative stress, were differentially abundant in relation to the elevated CO2 treatment. Taken together, these results suggest that elevated CO2 affected a generalized decrease in cyanobacteria in the biocrusts and may have favoured cyanobacteria with altered gene inventories for coping with oxidative stress.


Asunto(s)
Adaptación Biológica/genética , Dióxido de Carbono/metabolismo , Cianobacterias/crecimiento & desarrollo , Cianobacterias/metabolismo , Microbiología del Suelo , Biodiversidad , Biomasa , Cianobacterias/genética , Ecosistema , Biblioteca de Genes , Metagenoma , Nevada , Estrés Oxidativo , Estados Unidos
18.
Environ Sci Technol ; 46(9): 4837-44, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22455542

RESUMEN

To develop an understanding of the role that microorganisms play in the transport of (129)I in soil-water systems, bacteria isolated from subsurface sediments were assessed for iodide oxidizing activity. Spent liquid medium from 27/84 bacterial cultures enhanced iodide oxidation 2-10 fold in the presence of H(2)O(2). Organic acids secreted by the bacteria were found to enhance iodide oxidation by (1) lowering the pH of the spent medium, and (2) reacting with H(2)O(2) to form peroxy carboxylic acids, which are extremely strong oxidizing agents. H(2)O(2)-dependent iodide oxidation increased exponentially from 8.4 to 825.9 µM with decreasing pH from 9 to 4. Organic acids with ≥2 carboxy groups enhanced H(2)O(2)-dependent iodide oxidation (1.5-15-fold) as a function of increasing pH above pH 6.0, but had no effect at pH ≤ 5.0. The results indicate that as pH decreases (≤5.0), increasing H(2)O(2) hydrolysis is the driving force behind iodide oxidation. However, at pH ≥ 6.0, spontaneous decomposition of peroxy carboxylic acids, generated from H(2)O(2) and organic acids, contributes significantly to iodide oxidation. The results reveal an indirect microbial mechanism, organic acid secretion coupled to H(2)O(2) production, that could enhance iodide oxidation and organo-iodine formation in soils and sediments.


Asunto(s)
Yoduros/química , Microbiología del Suelo , Contaminantes Radiactivos del Suelo/química , Bacterias/metabolismo , Ácidos Carboxílicos/química , Peróxido de Hidrógeno/química , Radioisótopos de Yodo/química , Oxidación-Reducción
19.
J Ind Microbiol Biotechnol ; 39(9): 1269-78, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22592947

RESUMEN

We describe a latex wet coalescence method for gas-phase immobilization of microorganisms on paper which does not require drying for adhesion. This method reduces drying stresses to the microbes. It is applicable for microorganisms that do not tolerate desiccation stress during latex drying even in the presence of carbohydrates. Small surface area, 10-65 µm thick coatings were generated on chromatography paper strips and placed in the head-space of vertical sealed tubes containing liquid to hydrate the paper. These gas-phase microbial coatings hydrated by liquid in the paper pore space demonstrated absorption or evolution of H2, CO, CO2 or O2. The microbial products produced, ethanol and acetate, diffuse into the hydrated paper pores and accumulate in the liquid at the bottom of the tube. The paper provides hydration to the back side of the coating and also separates the biocatalyst from the products. Coating reactivity was demonstrated for Chlamydomonas reinhardtii CC124, which consumed CO2 and produced 10.2 ± 0.2 mmol O2 m⁻² h⁻¹, Rhodopseudomonas palustris CGA009, which consumed acetate and produced 0.47 ± 0.04 mmol H2 m⁻² h⁻¹, Clostridium ljungdahlii OTA1, which consumed 6 mmol CO m⁻² h⁻¹, and Synechococcus sp. PCC7002, which consumed CO2 and produced 5.00 ± 0.25 mmol O2 m⁻² h⁻¹. Coating thickness and microstructure were related to microbe size as determined by digital micrometry, profilometry, and confocal microscopy. The immobilization of different microorganisms in thin adhesive films in the gas phase demonstrates the utility of this method for evaluating genetically optimized microorganisms for gas absorption and gas evolution.


Asunto(s)
Adhesión Bacteriana , Gases/metabolismo , Látex/química , Papel , Rhodopseudomonas/metabolismo , Absorción , Biocatálisis , Reactores Biológicos , Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Gases/química , Hidrógeno/metabolismo , Oxígeno/metabolismo , Rhodopseudomonas/crecimiento & desarrollo
20.
Sci Total Environ ; 816: 151548, 2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-34780820

RESUMEN

Recent studies evaluating multiple years of groundwater radioiodine (129I) concentration in a riparian wetland located in South Carolina, USA identified strong seasonal concentration fluctuations, such that summer concentrations were much greater than winter concentrations. These fluctuations were observed only in the wetlands but not in the upland portion of the plume and only with 129I, and not with other contaminants of anthropogenic origin: nitrate/nitrite, strontium-90, technecium-99, tritium, or uranium. This unexplained observation was hypothesized to be the result of strongly coupled processes involving hydrology, water temperature, microbiology, and chemistry. To test this hypothesis, an extensive historical groundwater database was evaluated, and additional measurements of total iodine and iodine speciation were made from recently collected samples. During the summer, the water table decreased by as much as 0.7 m, surface water temperature increased by as much as 15 °C, and total iodine concentrations were consistently greater (up to 680%) than the following winter months. Most of the additional iodine observed in the summer could be attributed to proportional gains in organo-iodine, and not iodide or iodate. Furthermore, 129I concentrations were observed to be two-orders-of-magnitude greater at the bottom of the upland aquifer than at the top. A coupled hydrological and biogeochemical conceptual model is proposed to tie these observations together. First, as the surface water temperature increased during the summer, microbial activity was enhanced, which in turn stimulated the formation of mobile organo-I. Hydrological processes were also likely involved in the observed iodine seasonal changes: (1) as the water table decreased in summer, the remaining upland water entering the wetland was comprised of a greater proportion of water containing elevated iodine concentrations from the low depths, and (2) water flow paths in summer changed such that the wells intercepted more of the contaminant plume and less of the diluting rainwater (due to evapotranspiration) and streamwater (as the lower levels promote a predominantly recharging system). These results underscore the importance of coupled processes influencing contaminant concentrations, and the need to assess seasonal contaminant variations to optimize long-term monitoring programs of wetlands.


Asunto(s)
Agua Subterránea , Humedales , Radioisótopos de Yodo/análisis , Estaciones del Año , South Carolina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA