Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell ; 175(1): 101-116.e25, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30220459

RESUMEN

IDH1 mutations are common in low-grade gliomas and secondary glioblastomas and cause overproduction of (R)-2HG. (R)-2HG modulates the activity of many enzymes, including some that are linked to transformation and some that are probably bystanders. Although prior work on (R)-2HG targets focused on 2OG-dependent dioxygenases, we found that (R)-2HG potently inhibits the 2OG-dependent transaminases BCAT1 and BCAT2, likely as a bystander effect, thereby decreasing glutamate levels and increasing dependence on glutaminase for the biosynthesis of glutamate and one of its products, glutathione. Inhibiting glutaminase specifically sensitized IDH mutant glioma cells to oxidative stress in vitro and to radiation in vitro and in vivo. These findings highlight the complementary roles for BCATs and glutaminase in glutamate biosynthesis, explain the sensitivity of IDH mutant cells to glutaminase inhibitors, and suggest a strategy for maximizing the effectiveness of such inhibitors against IDH mutant gliomas.


Asunto(s)
Glioma/metabolismo , Ácido Glutámico/biosíntesis , Transaminasas/fisiología , Línea Celular Tumoral , Glioma/fisiopatología , Ácido Glutámico/efectos de los fármacos , Glutaratos/metabolismo , Glutaratos/farmacología , Homeostasis/efectos de los fármacos , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/fisiología , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/fisiología , Mutación , Oxidación-Reducción/efectos de los fármacos , Proteínas Gestacionales/genética , Proteínas Gestacionales/fisiología , Transaminasas/antagonistas & inhibidores , Transaminasas/genética
2.
Nature ; 618(7963): 87-93, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37259003

RESUMEN

Technologically critical rare-earth elements are notoriously difficult to separate, owing to their subtle differences in ionic radius and coordination number1-3. The natural lanthanide-binding protein lanmodulin (LanM)4,5 is a sustainable alternative to conventional solvent-extraction-based separation6. Here we characterize a new LanM, from Hansschlegelia quercus (Hans-LanM), with an oligomeric state sensitive to rare-earth ionic radius, the lanthanum(III)-induced dimer being >100-fold tighter than the dysprosium(III)-induced dimer. X-ray crystal structures illustrate how picometre-scale differences in radius between lanthanum(III) and dysprosium(III) are propagated to Hans-LanM's quaternary structure through a carboxylate shift that rearranges a second-sphere hydrogen-bonding network. Comparison to the prototypal LanM from Methylorubrum extorquens reveals distinct metal coordination strategies, rationalizing Hans-LanM's greater selectivity within the rare-earth elements. Finally, structure-guided mutagenesis of a key residue at the Hans-LanM dimer interface modulates dimerization in solution and enables single-stage, column-based separation of a neodymium(III)/dysprosium(III) mixture to >98% individual element purities. This work showcases the natural diversity of selective lanthanide recognition motifs, and it reveals rare-earth-sensitive dimerization as a biological principle by which to tune the performance of biomolecule-based separation processes.


Asunto(s)
Proteínas Bacterianas , Elementos de la Serie de los Lantanoides , Lantano , Multimerización de Proteína , Disprosio/química , Disprosio/aislamiento & purificación , Iones/química , Elementos de la Serie de los Lantanoides/química , Elementos de la Serie de los Lantanoides/aislamiento & purificación , Lantano/química , Neodimio/química , Neodimio/aislamiento & purificación , Methylocystaceae , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Estructura Cuaternaria de Proteína
3.
Nature ; 597(7877): 566-570, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34526715

RESUMEN

Numerous post-transcriptional modifications of transfer RNAs have vital roles in translation. The 2-methylthio-N6-isopentenyladenosine (ms2i6A) modification occurs at position 37 (A37) in transfer RNAs that contain adenine in position 36 of the anticodon, and serves to promote efficient A:U codon-anticodon base-pairing and to prevent unintended base pairing by near cognates, thus enhancing translational fidelity1-4. The ms2i6A modification is installed onto isopentenyladenosine (i6A) by MiaB, a radical S-adenosylmethionine (SAM) methylthiotransferase. As a radical SAM protein, MiaB contains one [Fe4S4]RS cluster used in the reductive cleavage of SAM to form a 5'-deoxyadenosyl 5'-radical, which is responsible for removing the C2 hydrogen of the substrate5. MiaB also contains an auxiliary [Fe4S4]aux cluster, which has been implicated6-9 in sulfur transfer to C2 of i6A37. How this transfer takes place is largely unknown. Here we present several structures of MiaB from Bacteroides uniformis. These structures are consistent with a two-step mechanism, in which one molecule of SAM is first used to methylate a bridging µ-sulfido ion of the auxiliary cluster. In the second step, a second SAM molecule is cleaved to a 5'-deoxyadenosyl 5'-radical, which abstracts the C2 hydrogen of the substrate but only after C2 has undergone rehybridization from sp2 to sp3. This work advances our understanding of how enzymes functionalize inert C-H bonds with sulfur.


Asunto(s)
Bacteroides/enzimología , Metiltransferasas/química , ARN de Transferencia/química , ARN de Transferencia/metabolismo , S-Adenosilmetionina/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Sulfurtransferasas/química , Adenosina/análogos & derivados , Adenosina/metabolismo , Sitios de Unión , Biocatálisis , Isopenteniladenosina/metabolismo , Metiltransferasas/metabolismo , Modelos Moleculares , Dominios Proteicos , ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Especificidad por Sustrato , Sulfurtransferasas/metabolismo
4.
Analyst ; 149(13): 3636-3650, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38814097

RESUMEN

This work presents a thorough characterization of Helaina recombinant human lactoferrin (rhLF, Effera™) expressed in a yeast system at an industrial scale for the first time. Proteomic analysis confirmed that its amino acid sequence is identical to that of native human LF. N-linked glycans were detected at three known glycosylation sites, namely, Asparagines-156, -497, and -642 and they were predominantly oligomannose structures having five to nine mannoses. Helaina rhLF's protein secondary structure was nearly identical to that of human milk lactoferrin (hmLF), as revealed by microfluidic modulation spectroscopy. Results of small-angle X-ray scattering (SAXS) and analytical ultracentrifugation analyses confirmed that, like hmLF, Helaina rhLF displayed well-folded globular structures in solution. Reconstructed solvent envelopes of Helaina rhLF, obtained through the SAXS analysis, demonstrated a remarkable fit with the reported crystalline structure of iron-bound native hmLF. Differential scanning calorimetry investigations into the thermal stability of Helaina rhLF revealed two distinct denaturation temperatures at 68.7 ± 0.9 °C and 91.9 ± 0.5 °C, consistently mirroring denaturation temperatures observed for apo- and holo-hmLF. Overall, Helaina rhLF differed from hmLF in the N-glycans they possessed; nevertheless, the characterization results affirmed that Helaina rhLF was of high purity and exhibited globular structures closely akin to that of hmLF.


Asunto(s)
Lactoferrina , Proteínas Recombinantes , Saccharomycetales , Lactoferrina/química , Lactoferrina/metabolismo , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Saccharomycetales/química , Saccharomycetales/metabolismo , Saccharomycetales/genética , Dispersión del Ángulo Pequeño , Secuencia de Aminoácidos , Glicosilación , Difracción de Rayos X
5.
Nucleic Acids Res ; 50(20): 11775-11798, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36399514

RESUMEN

The enteroviral 2C protein is a therapeutic target, but the absence of a mechanistic framework for this enzyme limits our understanding of inhibitor mechanisms. Here, we use poliovirus 2C and a derivative thereof to elucidate the first biochemical mechanism for this enzyme and confirm the applicability of this mechanism to other members of the enterovirus genus. Our biochemical data are consistent with a dimer forming in solution, binding to RNA, which stimulates ATPase activity by increasing the rate of hydrolysis without impacting affinity for ATP substantially. Both RNA and DNA bind to the same or overlapping site on 2C, driven by the phosphodiester backbone, but only RNA stimulates ATP hydrolysis. We propose that RNA binds to 2C driven by the backbone, with reorientation of the ribose hydroxyls occurring in a second step to form the catalytically competent state. 2C also uses a two-step mechanism for binding to ATP. Initial binding is driven by the α and ß phosphates of ATP. In the second step, the adenine base and other substituents of ATP are used to organize the active site for catalysis. These studies provide the first biochemical description of determinants driving specificity and catalytic efficiency of a picornaviral 2C ATPase.


Asunto(s)
Adenosina Trifosfatasas , ARN , Adenosina Trifosfatasas/metabolismo , ARN/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas Portadoras/metabolismo , Hidrólisis , Adenosina Trifosfato/metabolismo , Cinética , Unión Proteica , Sitios de Unión
6.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34475207

RESUMEN

Cyclic dimeric guanosine monophosphate (c-di-GMP) serves as a second messenger that modulates bacterial cellular processes, including biofilm formation. While proteins containing both c-di-GMP synthesizing (GGDEF) and c-di-GMP hydrolyzing (EAL) domains are widely predicted in bacterial genomes, it is poorly understood how domains with opposing enzymatic activity are regulated within a single polypeptide. Herein, we report the characterization of a globin-coupled sensor protein (GCS) from Paenibacillus dendritiformis (DcpG) with bifunctional c-di-GMP enzymatic activity. DcpG contains a regulatory sensor globin domain linked to diguanylate cyclase (GGDEF) and phosphodiesterase (EAL) domains that are differentially regulated by gas binding to the heme; GGDEF domain activity is activated by the Fe(II)-NO state of the globin domain, while EAL domain activity is activated by the Fe(II)-O2 state. The in vitro activity of DcpG is mimicked in vivo by the biofilm formation of P. dendritiformis in response to gaseous environment, with nitric oxide conditions leading to the greatest amount of biofilm formation. The ability of DcpG to differentially control GGDEF and EAL domain activity in response to ligand binding is likely due to the unusual properties of the globin domain, including rapid ligand dissociation rates and high midpoint potentials. Using structural information from small-angle X-ray scattering and negative stain electron microscopy studies, we developed a structural model of DcpG, providing information about the regulatory mechanism. These studies provide information about full-length GCS protein architecture and insight into the mechanism by which a single regulatory domain can selectively control output domains with opposing enzymatic activities.


Asunto(s)
GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Paenibacillus/enzimología , Liasas de Fósforo-Oxígeno/metabolismo , Secuencia de Aminoácidos/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/genética , Ligandos , Paenibacillus/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Dominios Proteicos/genética , Sistemas de Mensajero Secundario/genética
7.
Biochemistry ; 61(22): 2579-2591, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36306436

RESUMEN

We examined the complex network of interactions among RNA, the metabolome, and divalent Mg2+ under conditions that mimic the Escherichia coli cytoplasm. We determined Mg2+ binding constants for the top 15 E. coli metabolites, comprising 80% of the metabolome by concentration at physiological pH and monovalent ion concentrations. These data were used to inform the development of an artificial cytoplasm that mimics in vivo E. coli conditions, which we term "Eco80". We empirically determined that the mixture of E. coli metabolites in Eco80 approximated single-site binding behavior toward Mg2+ in the biologically relevant free Mg2+ range of ∼0.5 to 3 mM Mg2+, using a Mg2+-sensitive fluorescent dye. Effects of Eco80 conditions on the thermodynamic stability, chemical stability, structure, and catalysis of RNA were examined. We found that Eco80 conditions lead to opposing effects on the thermodynamic and chemical stabilities of RNA. In particular, the thermodynamic stability of RNA helices was weakened by 0.69 ± 0.12 kcal/mol, while the chemical stability was enhanced ∼2-fold, which can be understood using the speciation of Mg2+ between weak and strong Mg2+-metabolite complexes in Eco80. Overall, the use of Eco80 reflects RNA function in vivo and enhances the biological relevance of mechanistic studies of RNA.


Asunto(s)
Escherichia coli , ARN , Escherichia coli/genética , Termodinámica , Estabilidad del ARN , Metaboloma
8.
Adv Funct Mater ; 32(49)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36590650

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surface spike glycoprotein - a major antibody target - is critical for virus entry via engagement of human angiotensin-converting enzyme 2 (ACE2) receptor. Despite successes with existing vaccines and therapies that primarily target the receptor binding domain (RBD) of the spike protein, the susceptibility of RBD to mutations provides escape routes for the SARS-CoV-2 from neutralizing antibodies. On the other hand, structural conservation in the spike protein can be targeted to reduce escape mutations and achieve broad protection. Here, we designed candidate stable immunogens that mimic surface features of selected conserved regions of spike protein through 'epitope grafting,' in which we present the target epitope topology on diverse heterologous scaffolds that can structurally accommodate the spike epitopes. Structural characterization of the epitope-scaffolds showed stark agreement with our computational models and target epitopes. The sera from mice immunized with engineered designs display epitope-scaffolds and spike binding activity. We also demonstrated the utility of the designed epitope-scaffolds in diagnostic applications. Taken all together, our study provides important methodology for targeting the conserved, non-RBD structural motifs of spike protein for SARS-CoV-2 epitope vaccine design and demonstrates the potential utility of 'epitope grafting' in rational vaccine design.

9.
Plant Physiol ; 186(4): 1932-1950, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-33905500

RESUMEN

Maize (Zea mays L.) Ufo1-1 is a spontaneous dominant mutation of the unstable factor for orange1 (ufo1). We recently cloned ufo1, which is a Poaceae-specific gene highly expressed during seed development in maize. Here, we have characterized Ufo1-1 and a loss-of-function Ds insertion allele (ufo1-Dsg) to decipher the role of ufo1 in maize. We found that both ufo1 mutant alleles impact sugars and hormones, and have defects in the basal endosperm transfer layer (BETL) and adjacent cell types. The Ufo1-1 BETL had reduced cell elongation and cell wall ingrowth, resulting in cuboidal shaped transfer cells. In contrast, the ufo1-Dsg BETL cells showed a reduced overall size with abnormal wall ingrowth. Expression analysis identified the impact of ufo1 on several genes essential for BETL development. The overexpression of Ufo1-1 in various tissues leads to ectopic phenotypes, including abnormal cell organization and stomata subsidiary cell defects. Interestingly, pericarp and leaf transcriptomes also showed that as compared with wild type, Ufo1-1 had ectopic expression of endosperm development-specific genes. This study shows that Ufo1-1 impacts the expression patterns of a wide range of genes involved in various developmental processes.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Endospermo/crecimiento & desarrollo , Factores de Transcripción/genética , Zea mays/genética , Metabolismo de los Hidratos de Carbono/genética , Aumento de la Célula , Pared Celular/genética , Pared Celular/metabolismo , Endospermo/genética , Factores de Transcripción/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
10.
Proc Natl Acad Sci U S A ; 116(46): 23075-23082, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31666318

RESUMEN

RNA folding is often studied by renaturing full-length RNA in vitro and tracking folding transitions. However, the intracellular transcript folds as it emerges from the RNA polymerase. Here, we investigate the folding pathways and stability of numerous late-transcriptional intermediates of yeast and Escherichia coli transfer RNAs (tRNAs). Transfer RNA is a highly regulated functional RNA that undergoes multiple steps of posttranscriptional processing and is found in very different lengths during its lifetime in the cell. The precursor transcript is extended on both the 5' and 3' ends of the cloverleaf core, and these extensions get trimmed before addition of the 3'-CCA and aminoacylation. We studied the thermodynamics and structures of the precursor tRNA and of late-transcriptional intermediates of the cloverleaf structure. We examined RNA folding at both the secondary and tertiary structural levels using multiple biochemical and biophysical approaches. Our findings suggest that perhaps nature has selected for a single-base addition to control folding to the functional 3D structure. In near-cellular conditions, yeast tRNAPhe and E. coli tRNAAla transcripts fold in a single, cooperative transition only when nearly all of the nucleotides in the cloverleaf are transcribed by indirectly enhancing folding cooperativity. Furthermore, native extensions on the 5' and 3' ends do not interfere with cooperative core folding. This highly controlled cooperative folding has implications for recognition of tRNA by processing and modification enzymes and quality control of tRNA in cells.


Asunto(s)
Escherichia coli/genética , Nucleótidos/genética , ARN de Transferencia/química , Levaduras/genética , Escherichia coli/química , Escherichia coli/metabolismo , Conformación de Ácido Nucleico , Nucleótidos/metabolismo , Pliegue del ARN , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Levaduras/química , Levaduras/metabolismo
11.
Biochemistry ; 60(49): 3801-3812, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34843212

RESUMEN

Bifunctional enzymes, which contain two domains with opposing enzymatic activities, are widely distributed in bacteria, but the regulatory mechanism(s) that prevent futile cycling are still poorly understood. The recently described bifunctional enzyme, DcpG, exhibits unusual heme properties and is surprisingly able to differentially regulate its two cyclic dimeric guanosine monophosphate (c-di-GMP) metabolic domains in response to heme gaseous ligands. Mutagenesis of heme-edge residues was used to probe the heme pocket and resulted in decreased O2 dissociation kinetics, identifying roles for these residues in modulating DcpG gas sensing. In addition, the resonance Raman spectra of the DcpG wild type and heme-edge mutants revealed that the mutations alter the heme electrostatic environment, vinyl group conformations, and spin state population. Using small-angle X-ray scattering and negative stain electron microscopy, the heme-edge mutations were demonstrated to cause changes to the protein conformation, which resulted in altered signaling transduction and enzyme kinetics. These findings provide insights into molecular interactions that regulate DcpG gas sensing as well as mechanisms that have evolved to control multidomain bacterial signaling proteins.


Asunto(s)
Proteínas Bacterianas/química , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/química , Hemo/química , Hemoproteínas/química , Paenibacillus/química , Hidrolasas Diéster Fosfóricas/química , Liasas de Fósforo-Oxígeno/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , GMP Cíclico/química , GMP Cíclico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Hemo/metabolismo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Cinética , Modelos Moleculares , Oxígeno/química , Oxígeno/metabolismo , Paenibacillus/enzimología , Paenibacillus/genética , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Electricidad Estática , Relación Estructura-Actividad , Especificidad por Sustrato
12.
J Chem Inf Model ; 61(3): 1322-1333, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33570386

RESUMEN

Cryptic pockets are visible in ligand-bound protein structures but are occluded in unbound structures. Utilizing these pockets in fragment-based drug-design provides an attractive option for proteins not tractable by classical binding sites. However, owing to their hidden nature, they are difficult to identify. Here, we show that small glycols find cryptic pockets on a diverse set of proteins. Initial crystallography experiments serendipitously revealed the ability of ethylene glycol, a small glycol, to identify a cryptic pocket on the W6A mutant of the RBSX protein (RBSX-W6A). Explicit-solvent molecular dynamics (MD) simulations of RBSX-W6A with the exposed state of the cryptic pocket (ethylene glycol removed) revealed closure of the pocket reiterating that the exposed state of cryptic pockets in general are unstable in the absence of ligands. Also, no change in the pocket was observed for simulations of RBSX-W6A with the occluded state of the cryptic pocket, suggesting that water molecules are not able to open the cryptic pocket. "Cryptic-pocket finding" potential of small glycols was then supported and generalized through additional crystallography experiments, explicit-cosolvent MD simulations, and protein data set construction and analysis. The cryptic pocket on RBSX-W6A was found again upon repeating the crystallography experiments with another small glycol, propylene glycol. Use of ethylene glycol as a probe molecule in cosolvent MD simulations led to the enhanced sampling of the exposed state of experimentally observed cryptic sites on a test set of two proteins (Niemann-Pick C2, Interleukin-2). Further, analyses of protein structures with validated cryptic sites showed that ethylene glycol molecules bind to sites on proteins (Bcl-xL, G-actin, myosin II, and glutamate receptor 2), which become apparent upon binding of biologically relevant ligands. Our study thus suggests potential application of the small glycols in experimental and computational fragment-based approaches to identify cryptic pockets in apparently undruggable and/or difficult targets, making these proteins amenable to drug-design strategies.


Asunto(s)
Glicoles , Proteínas , Sitios de Unión , Ligandos , Simulación de Dinámica Molecular , Unión Proteica , Proteínas/metabolismo
13.
Biochemistry ; 58(14): 1845-1860, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30855138

RESUMEN

Class I ribonucleotide reductases (RNRs) share a common mechanism of nucleotide reduction in a catalytic α subunit. All RNRs initiate catalysis with a thiyl radical, generated in class I enzymes by a metallocofactor in a separate ß subunit. Class Id RNRs use a simple mechanism of cofactor activation involving oxidation of a MnII2 cluster by free superoxide to yield a metal-based MnIIIMnIV oxidant. This simple cofactor assembly pathway suggests that class Id RNRs may be representative of the evolutionary precursors to more complex class Ia-c enzymes. X-ray crystal structures of two class Id α proteins from Flavobacterium johnsoniae ( Fj) and Actinobacillus ureae ( Au) reveal that this subunit is distinctly small. The enzyme completely lacks common N-terminal ATP-cone allosteric motifs that regulate overall activity, a process that normally occurs by dATP-induced formation of inhibitory quaternary structures to prevent productive ß subunit association. Class Id RNR activity is insensitive to dATP in the Fj and Au enzymes evaluated here, as expected. However, the class Id α protein from Fj adopts higher-order structures, detected crystallographically and in solution. The Au enzyme does not exhibit these quaternary forms. Our study reveals structural similarity between bacterial class Id and eukaryotic class Ia α subunits in conservation of an internal auxiliary domain. Our findings with the Fj enzyme illustrate that nucleotide-independent higher-order quaternary structures can form in simple RNRs with truncated or missing allosteric motifs.


Asunto(s)
Dominio Catalítico , Desoxirribonucleótidos/química , Conformación Proteica , Ribonucleótido Reductasas/química , Actinobacillus/enzimología , Actinobacillus/genética , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Biocatálisis , Cristalografía por Rayos X , Desoxirribonucleótidos/biosíntesis , Desoxirribonucleótidos/genética , Flavobacterium/enzimología , Flavobacterium/genética , Modelos Moleculares , Filogenia , Ribonucleótido Reductasas/clasificación , Ribonucleótido Reductasas/genética , Dispersión del Ángulo Pequeño , Homología de Secuencia de Aminoácido , Difracción de Rayos X
14.
J Am Chem Soc ; 141(36): 14142-14151, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31390192

RESUMEN

Quinolinic acid is a common intermediate in the biosynthesis of nicotinamide adenine dinucleotide and its derivatives in all organisms that synthesize the molecule de novo. In most prokaryotes, it is formed from the condensation of dihydroxyacetone phosphate (DHAP) and iminoaspartate (IA) by the action of quinolinate synthase (NadA). NadA contains a [4Fe-4S] cluster cofactor with a unique noncysteinyl-ligated iron ion (Fea), which is proposed to bind the hydroxyl group of an intermediate in its reaction to facilitate a dehydration step. However, direct evidence for this role in catalysis has yet to be provided, and the exact chemical mechanism that underlies this transformation remains elusive. Herein, we present a structure of NadA from Pyrococcus horikoshii (PhNadA) in complex with IA and show that a carboxylate group of the molecule is ligated to Fea of the iron-sulfur cluster, occupying the site to which DHAP has been proposed to bind during catalysis. When crystals of PhNadA in complex with IA are soaked briefly in DHAP before freezing, electron density for a new molecule is observed, which we suggest is related to an intermediate in the reaction. Similar, but slightly different, "intermediates" are observed when crystals of a PhNadA Glu198Gln variant are incubated with DHAP, oxaloacetate, and ammonium chloride, conditions under which IA is formed chemically. Continuous-wave and pulse electron paramagnetic resonance techniques are used to verify the binding mode of substrates and proposed intermediates in frozen solution.


Asunto(s)
Ácido Aspártico/análogos & derivados , Dihidroxiacetona Fosfato/metabolismo , Complejos Multienzimáticos/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Biocatálisis , Cristalografía por Rayos X , Dihidroxiacetona Fosfato/química , Modelos Moleculares , Estructura Molecular , Complejos Multienzimáticos/química , Pyrococcus horikoshii/enzimología
15.
Nat Chem Biol ; 13(4): 439-445, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28192411

RESUMEN

RNA enzymes (ribozymes) have remarkably diverse biological roles despite having limited chemical diversity. Protein enzymes enhance their reactivity through recruitment of cofactors; likewise, the naturally occurring glmS ribozyme uses the glucosamine-6-phosphate (GlcN6P) organic cofactor for phosphodiester bond cleavage. Prior structural and biochemical studies have implicated GlcN6P as the general acid. Here we describe new catalytic roles of GlcN6P through experiments and calculations. Large stereospecific normal thio effects and a lack of metal-ion rescue in the holoribozyme indicate that nucleobases and the cofactor play direct chemical roles and align the active site for self-cleavage. Large stereospecific inverse thio effects in the aporibozyme suggest that the GlcN6P cofactor disrupts an inhibitory interaction of the nucleophile. Strong metal-ion rescue in the aporibozyme reveals that this cofactor also provides electrostatic stabilization. Ribozyme organic cofactors thus perform myriad catalytic roles, thereby allowing RNA to compensate for its limited functional diversity.


Asunto(s)
Biocatálisis , Glucosamina/análogos & derivados , Glucosa-6-Fosfato/análogos & derivados , ARN Catalítico/química , ARN Catalítico/metabolismo , Glucosamina/química , Glucosamina/metabolismo , Glucosa-6-Fosfato/química , Glucosa-6-Fosfato/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular
16.
Biochemistry ; 57(20): 2994-3002, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29733204

RESUMEN

A diverse set of organisms has adapted to live under extreme conditions. The molecular origin of the stability is unclear, however. It is not known whether the adaptation of functional RNAs, which have intricate tertiary structures, arises from strengthening of tertiary or secondary structure. Herein we evaluate effects of sequence changes on the thermostability of tRNAphe using experimental and computational approaches. To separate out effects of secondary and tertiary structure on thermostability, we modify base pairing strength in the acceptor stem, which does not participate in tertiary structure. In dilute solution conditions, strengthening secondary structure leads to non-two-state thermal denaturation curves and has small effects on thermostability, or the temperature at which tertiary structure and function are lost. In contrast, under cellular conditions with crowding and Mg2+-chelated amino acids, where two-state cooperative unfolding is maintained, strengthening secondary structure enhances thermostability. Investigation of stabilities of each tRNA stem across 44 organisms with a range of optimal growing temperatures revealed that organisms that grow in warmer environments have more stable stems. We also used Shannon entropies to identify positions of higher and lower information content, or sequence conservation, in tRNAphe and found that secondary structures have modest information content allowing them to drive thermal adaptation, while tertiary structures have maximal information content hindering them from participating in thermal adaptation. Base-paired regions with no tertiary structure and modest information content thus offer a facile evolutionary route to enhancing the thermostability of functional RNA by the simple molecular rules of base pairing.


Asunto(s)
Evolución Molecular , Pliegue del ARN , Estabilidad del ARN/genética , ARN de Transferencia de Fenilalanina/química , Emparejamiento Base/genética , Secuencia Conservada/genética , Calor , Conformación de Ácido Nucleico , ARN de Transferencia de Fenilalanina/genética
17.
Biochemistry ; 56(27): 3422-3433, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28657303

RESUMEN

RNA folding has been studied extensively in vitro, typically under dilute solution conditions and abiologically high salt concentrations of 1 M Na+ or 10 mM Mg2+. The cellular environment is very different, with 20-40% crowding and only 10-40 mM Na+, 140 mM K+, and 0.5-2.0 mM Mg2+. As such, RNA structures and functions can be radically altered under cellular conditions. We previously reported that tRNAphe secondary and tertiary structures unfold together in a cooperative two-state fashion under crowded in vivo-like ionic conditions, but in a noncooperative multistate fashion under dilute in vitro ionic conditions unless in nonphysiologically high concentrations of Mg2+. The mechanistic basis behind these effects remains unclear, however. To address the mechanism that drives RNA folding cooperativity, we probe effects of cellular conditions on structures and stabilities of individual secondary structure fragments comprising the full-length RNA. We elucidate effects of a diverse set of crowders on tRNA secondary structural fragments and full-length tRNA at three levels: at the nucleotide level by temperature-dependent in-line probing, at the tertiary structure level by small-angle X-ray scattering, and at the global level by thermal denaturation. We conclude that cooperative RNA folding is induced by two overlapping mechanisms: increased stability and compaction of tertiary structure through effects of Mg2+, and decreased stability of certain secondary structure elements through the effects of molecular crowders. These findings reveal that despite having very different chemical makeups RNA and protein can both have weak secondary structures in vivo leading to cooperative folding.


Asunto(s)
Modelos Moleculares , ARN de Hongos/química , ARN de Transferencia de Fenilalanina/química , Saccharomyces cerevisiae/metabolismo , Algoritmos , Calor/efectos adversos , Magnesio/química , Peso Molecular , Desnaturalización de Ácido Nucleico , Concentración Osmolar , Polietilenglicoles/química , Pliegue de Proteína , Pliegue del ARN , Estabilidad del ARN , Dispersión del Ángulo Pequeño , Temperatura de Transición
18.
Biochemistry ; 55(2): 313-21, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26684934

RESUMEN

Glutaredoxins (GRXs) are thiol-disulfide oxidoreductases abundant in prokaryotes, although little is understood of these enzymes from the domain Archaea. The numerous characterized GRXs from the domain Bacteria utilize a diversity of low-molecular-weight thiols in addition to glutathione as reductants. We report here the biochemical and structural properties of a GRX-like protein named methanoredoxin (MRX) from Methanosarcina acetivorans of the domain Archaea. MRX utilizes coenzyme M (CoMSH) as reductant for insulin disulfide reductase activity, which adds to the diversity of thiol protectants in prokaryotes. Cell-free extracts of M. acetivorans displayed CoMS-SCoM reductase activity that complements the CoMSH-dependent activity of MRX. The crystal structure exhibits a classic thioredoxin-glutaredoxin fold comprising three α-helices surrounding four antiparallel ß-sheets. A pocket on the surface contains a CVWC motif, identifying the active site with architecture similar to GRXs. Although it is a monomer in solution, the crystal lattice has four monomers in a dimer of dimers arrangement. A cadmium ion is found within the active site of each monomer. Two such ions stabilize the N-terminal tails and dimer interfaces. Our modeling studies indicate that CoMSH and glutathione (GSH) bind to the active site of MRX similar to the binding of GSH in GRXs, although there are differences in the amino acid composition of the binding motifs. The results, combined with our bioinformatic analyses, show that MRX represents a class of GRX-like enzymes present in a diversity of methane-producing Archaea.


Asunto(s)
Proteínas Arqueales/metabolismo , Glutarredoxinas/metabolismo , Mesna/metabolismo , Methanosarcina/metabolismo , Proteínas Arqueales/química , Glutarredoxinas/química , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Estructura Secundaria de Proteína
19.
J Am Chem Soc ; 138(23): 7224-7, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27224840

RESUMEN

Quinolinic acid (QA) is a common intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD(+)) and its derivatives in all organisms that synthesize the molecule de novo. In most prokaryotes, it is formed from the condensation of dihydroxyacetone phosphate (DHAP) and aspartate-enamine by the action of quinolinate synthase (NadA). NadA contains a [4Fe-4S] cluster cofactor with a unique, non-cysteinyl-ligated, iron ion (Fea), which is proposed to bind the hydroxyl group of a postulated intermediate in the last step of the reaction to facilitate a dehydration. However, direct evidence for this role in catalysis has yet to be provided. Herein, we present the structure of NadA in the presence of the product of its reaction, QA. We find that N1 and the C7 carboxylate group of QA ligate to Fea in a bidentate fashion, which is confirmed by Hyperfine Sublevel Correlation (HYSCORE) spectroscopy. This binding mode would place the C5 hydroxyl group of the postulated final intermediate distal to Fea and virtually incapable of coordinating to it. The structure shows that three strictly conserved amino acids, Glu198, Tyr109, and Tyr23, are in close proximity to the bound product. Substitution of these amino acids with Gln, Phe, and Phe, respectively, leads to complete loss of activity.


Asunto(s)
Complejos Multienzimáticos/química , Pyrococcus horikoshii/enzimología , Ácido Quinolínico/química , Ácido Aspártico/química , Sitios de Unión , Catálisis , Dihidroxiacetona Fosfato/química , Modelos Moleculares , Conformación Proteica
20.
Proc Natl Acad Sci U S A ; 110(47): 18874-9, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24198335

RESUMEN

The founding members of the HD-domain protein superfamily are phosphohydrolases, and newly discovered members are generally annotated as such. However, myo-inositol oxygenase (MIOX) exemplifies a second, very different function that has evolved within the common scaffold of this superfamily. A recently discovered HD protein, PhnZ, catalyzes conversion of 2-amino-1-hydroxyethylphosphonate to glycine and phosphate, culminating a bacterial pathway for the utilization of environmentally abundant 2-aminoethylphosphonate. Using Mössbauer and EPR spectroscopies, X-ray crystallography, and activity measurements, we show here that, like MIOX, PhnZ employs a mixed-valent Fe(II)/Fe(III) cofactor for the O2-dependent oxidative cleavage of its substrate. Phylogenetic analysis suggests that many more HD proteins may catalyze yet-unknown oxygenation reactions using this hitherto exceptional Fe(II)/Fe(III) cofactor. The results demonstrate that the catalytic repertoire of the HD superfamily extends well beyond phosphohydrolysis and suggest that the mechanism used by MIOX and PhnZ may be a common strategy for oxidative C-X bond cleavage.


Asunto(s)
Bacterias/enzimología , Inositol-Oxigenasa/química , Inositol-Oxigenasa/metabolismo , Modelos Moleculares , Organofosfonatos/metabolismo , Conformación Proteica , Catálisis , Cristalografía por Rayos X , Escherichia coli , Inositol-Oxigenasa/genética , Estructura Molecular , Filogenia , Espectroscopía de Mossbauer
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA