Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chembiochem ; 24(23): e202300556, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37749055

RESUMEN

A lipoxygenase from Pleurotus sajor-caju (PsLOX) was cloned, expressed in Escherichia coli, and purified as a soluble protein with a specific activity of 629 µmol/min/mg for arachidonic acid (AA). The native PsLOX exhibited a molecular mass of 146 kDa, including a 73-kDa homodimer, as estimated by gel-filtration chromatography. The major products converted from polyunsaturated fatty acids (PUFAs), including AA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), were identified as trioxilins (TrXs), namely 13,14,15-TrXB3 , 13,14,15-TrXB4 , and 15,16,17-TrXB5 , respectively, through high-performance liquid chromatography (HPLC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses. The enzyme displayed its maximum activity at pH 8.0 and 20 °C. Under these conditions, the specific activity and catalytic efficiency of PsLOX for PUFAs exhibited the following order: AA>EPA>DHA. Based on HPLC analysis and substrate specificity, PsLOX was identified as an arachidonate 15-LOX. PsLOX efficiently converted 10 mM of AA, EPA, and DHA to 8.7 mM of 13,14,15-TrXB3 (conversion rate: 87 %), 7.9 mM of 13,14,15-TrXB4 (79 %), and 7.2 mM of 15,16,17-TrXB5 (72 %) in 15, 20, and 20 min, respectively, marking the highest conversion rates reported to date. Collectively, our results demonstrate that PsLOX is an efficient TrXs-producing enzyme.


Asunto(s)
Lipooxigenasa , Espectrometría de Masas en Tándem , Lipooxigenasa/metabolismo , Cromatografía Liquida , Ácidos Grasos Insaturados , Biotransformación , Ácidos Docosahexaenoicos/metabolismo
2.
Int J Mol Sci ; 23(7)2022 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-35409349

RESUMEN

One- or two-carbon (C1 or C2) compounds have been considered attractive substrates because they are inexpensive and abundant. Methanol and ethanol are representative C1 and C2 compounds, which can be used as bio-renewable platform feedstocks for the biotechnological production of value-added natural chemicals. Methanol-derived formaldehyde and ethanol-derived acetaldehyde can be converted to 3-hydroxypropanal (3-HPA) via aldol condensation. 3-HPA is used in food preservation and as a precursor for 3-hydroxypropionic acid and 1,3-propanediol that are starting materials for manufacturing biocompatible plastic and polytrimethylene terephthalate. In this study, 3-HPA was biosynthesized from formaldehyde and acetaldehyde using deoxyribose-5-phosphate aldolase from Thermotoga maritima (DERATma) and cloned and expressed in Escherichia coli for 3-HPA production. Under optimum conditions, DERATma produced 7 mM 3-HPA from 25 mM substrate (formaldehyde and acetaldehyde) for 60 min with 520 mg/L/h productivity. To demonstrate the one-pot 3-HPA production from methanol and ethanol, we used methanol dehydrogenase from Lysinibacillus xylanilyticus (MDHLx) and DERATma. One-pot 3-HPA production via aldol condensation of formaldehyde and acetaldehyde from methanol and ethanol, respectively, was investigated under optimized reaction conditions. This is the first report on 3-HPA production from inexpensive alcohol substrates (methanol and ethanol) by cascade reaction using DERATma and MDHLx.


Asunto(s)
Escherichia coli , Metanol , Acetaldehído , Escherichia coli/genética , Etanol , Formaldehído , Metanol/química
3.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540582

RESUMEN

Methanol dehydrogenase (Mdh), is a crucial enzyme for utilizing methane and methanol as carbon and energy sources in methylotrophy and synthetic methylotrophy. Engineering of Mdh, especially NAD-dependent Mdh, has thus been actively investigated to enhance methanol conversion. However, its poor catalytic activity and low methanol affinity limit its wider application. In this study, we applied a transcriptional factor-based biosensor for the direct evolution of Mdh from Lysinibacillus xylanilyticus (Lxmdh), which has a relatively high turnover rate and low KM value compared to other wild-type NAD-dependent Mdhs. A random mutant library of Lxmdh was constructed in Escherichia coli and was screened using formaldehyde-detectable biosensors by incubation with low methanol concentrations. Positive clones showing higher fluorescence were selected by fluorescence-activated cell sorting (FACS) system, and their catalytic activities toward methanol were evaluated. The successfully isolated mutants E396V, K318N, and K46E showed high activity, particularly at very low methanol concentrations. In kinetic analysis, mutant E396V, K318N, and K46E had superior methanol conversion efficiency, with 79-, 23-, and 3-fold improvements compared to the wild-type, respectively. These mutant enzymes could thus be useful for engineering synthetic methylotrophy and for enhancing methanol conversion to various useful products.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Bacillaceae/enzimología , Mutación , Oxidorreductasas de Alcohol/metabolismo , Bacillaceae/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas Biosensibles , Cinética , Metanol/metabolismo
4.
Int J Mol Sci ; 20(9)2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067766

RESUMEN

The microbial assimilation of one-carbon (C1) gases is a topic of interest, given that products developed using this pathway have the potential to act as promising substrates for the synthesis of valuable chemicals via enzymatic oxidation or C-C bonding. Despite extensive studies on C1 gas assimilation pathways, their key enzymes have yet to be subjected to high-throughput evolution studies on account of the lack of an efficient analytical tool for C1 metabolites. To address this challenging issue, we attempted to establish a fine-tuned single-cell-level biosensor system constituting a combination of transcription factors (TFs) and several C1-converting enzymes that convert target compounds to the ligand of a TF. This enzymatic conversion broadens the detection range of ligands by the genetic biosensor systems. In this study, we presented new genetic enzyme screening systems (GESSs) to detect formate, formaldehyde, and methanol from specific enzyme activities and pathways, named FA-GESS, Frm-GESS, and MeOH-GESS, respectively. All the biosensors displayed linear responses to their respective C1 molecules, namely, formate (1.0-250 mM), formaldehyde (1.0-50 µM), and methanol (5-400 mM), and they did so with high specificity. Consequently, the helper enzymes, including formaldehyde dehydrogenase and methanol dehydrogenase, were successfully combined to constitute new versatile combinations of the C1-biosensors.


Asunto(s)
Proteínas Bacterianas/metabolismo , Técnicas Biosensibles/métodos , Formaldehído/análisis , Formiatos/análisis , Metanol/análisis , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Factores de Transcripción
5.
Biochem Biophys Res Commun ; 495(1): 1328-1334, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29180013

RESUMEN

Successful utilization of cellulose as renewable biomass depends on the development of economically feasible technologies, which can aid in enzymatic hydrolysis. In this study, we developed a whole-cell biosensor for detecting cellulolytic activity that relies on the recognition of cellobiose using the transcriptional factor CelR from Thermobifida fusca and transcriptional activation of its downstream gfp reporter gene. The fluorescence intensity of whole-cell biosensor, which was named as cellobiose-detectible genetic enzyme screening system (CBGESS), was directly proportional to the concentration of cellobiose. The strong fluorescence intensity of CBGESS demonstrated the ability to detect cellulolytic activity with two cellulosic substrates, carboxymethyl cellulose and p-nitrophenyl ß-D-cellobioside in cellulase-expressing Escherichia coli. In addition, CBGESS easily sensed crystalline cellulolytic activity when commercial Celluclast 1.5L was dropped on an Avicel plate. Therefore, CBGESS is a powerful tool for detecting cellulolytic activity with high sensitivity in the presence of soluble or insoluble cellulosic substrates. CBGESS may be further applied to excavate novel cellulases or microbes from both genetic libraries and various environments.


Asunto(s)
Bioensayo/métodos , Técnicas Biosensibles/métodos , Celulasa/metabolismo , Celulosa/metabolismo , Escherichia coli/metabolismo , Espectrometría de Fluorescencia/métodos , Factores de Transcripción/metabolismo , Celulosa/análisis , Cristalización , Hidrólisis , Técnicas de Sonda Molecular
6.
BMC Plant Biol ; 18(1): 118, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29902970

RESUMEN

BACKGROUND: Isoprene is a five-carbon chemical that is an important starting material for the synthesis of rubber, elastomers, and medicines. Although many plants produce huge amounts of isoprene, it is very difficult to obtain isoprene directly from plants because of its high volatility and increasing environmental regulations. Over the last decade, microorganisms have emerged as a promising alternative host for efficient and sustainable bioisoprene production. Isoprene synthase (IspS) has received much attention for the conversion of isoprene from dimethylallyl diphosphate (DMAPP). Herein, we isolated a highly expressible novel IspS gene from Metrosideros polymorpha (MpIspS), which was cloned and expressed in Escherichia coli, using a plant cDNA library and characterized its molecular and biochemical properties. RESULTS: The signal sequence deleted MpIspS was cloned and expressed in E. coli as a 65-kDa monomer. The maximal activity of the purified MpIspS was observed at pH 6.0 and 55 °C in the presence of 5 mM Mn2+. The Km, kcat, and kcat/Km for DMAPP as a substrate were 8.11 mM, 21 min- 1, and 2.59 mM- 1 min- 1, respectively. MpIspS was expressed along with the exogenous mevalonate pathway to produce isoprene in E. coli. The engineered cells produced isoprene concentrations of up to 23.3 mg/L using glycerol as the main carbon source. CONCLUSION: MpIspS was expressed in large amounts in E. coli, which led to increased enzymatic activity and resulted in isoprene production in vivo. These results demonstrate a new IspS enzyme that is useful as a key biocatalyst for bioisoprene production in engineered microbes.


Asunto(s)
Transferasas Alquil y Aril/genética , Myrtaceae/enzimología , Proteínas de Plantas/genética , Transferasas Alquil y Aril/aislamiento & purificación , Transferasas Alquil y Aril/metabolismo , Butadienos/metabolismo , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Genes de Plantas/genética , Hemiterpenos/metabolismo , Microorganismos Modificados Genéticamente , Myrtaceae/genética , Filogenia , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Alineación de Secuencia
7.
Metab Eng ; 40: 41-49, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28038953

RESUMEN

Metabolons in nature have evolved to facilitate more efficient catalysis of multistep reactions through the co-localization of functionally related enzymes to cellular organelles or membrane structures. To mimic the natural metabolon architecture, we present a novel artificial metabolon that was created by targeting multi-enzyme cascade reactions onto inclusion body (IB) in Escherichia coli. The utility of this system was examined by co-localizing four heterologous enzymes of the 1-butanol pathway onto an IB that was formed in E. coli through overexpression of the cellulose binding domain (CBD) of Cellulomonas fimi exoglucanase. To target the 1-butanol pathway enzymes to the CBD IB, we utilized a peptide-peptide interaction between leucine zipper (LZ) peptides. We genetically fused the LZ peptide to the N-termini of four heterologous genes involved in the synthetic 1-butanol pathway, whereas an antiparallel LZ peptide was fused to the CBD gene. The in vivo activity of the CBD IB-based metabolon was examined through the determination of 1-butanol synthesis using E. coli transformed with two plasmids containing the LZ-fused CBD and LZ-fused 1-butanol pathway genes, respectively. In vivo synthesis of 1-butanol using the engineered E. coli yielded 1.98g/L of 1-butanol from glucose, representing a 1.5-fold increase over that obtained from E. coli expressing the LZ-fused 1-butanol pathway genes alone. In an attempt to examine the in vitro 1-butanol productivity, we reconstituted CBD IB-based metabolon using CBD IB and individual enzymes of 1-butanol pathway. The 1-butanol productivity of in vitro reconstituted CBD IB-based metabolon using acetoacetyl-CoA as the starting material was 2.29mg/L/h, 7.9-fold higher than that obtained from metabolon-free enzymes of 1-butanol pathway. Therefore, this novel CBD-based artificial metabolon may prove useful in metabolic engineering both in vivo and in vitro for the efficient production of desired products.


Asunto(s)
1-Butanol/metabolismo , Vías Biosintéticas/genética , Escherichia coli/fisiología , Mejoramiento Genético/métodos , Cuerpos de Inclusión/metabolismo , Leucina Zippers/genética , Complejos Multienzimáticos/genética , 1-Butanol/aislamiento & purificación , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Marcación de Gen/métodos , Cuerpos de Inclusión/genética , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Complejos Multienzimáticos/metabolismo
8.
Biotechnol Lett ; 38(10): 1775-80, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27388916

RESUMEN

OBJECTIVES: To optimize conversion of rutin to isoquercetin by commercial α-L-rhamnosidase using high hydrostatic pressure (HHP). RESULTS: The de-rhamnosylation activity of α-L-rhamnosidase for isoquercetin production was maximal at pH 6.0 and 50 °C using HHP (150 MPa). The enzyme showed high specificity for rutin. The specific activity for rutin at HHP was 1.5-fold higher than that at atmospheric pressure. The enzyme completely hydrolysed 20 mM rutin in tartary buckwheat extract after 2 h at HHP, with a productivity of 10 mM h(-1). The productivity and conversion were 2.2- and 1.5-fold higher at HHP than at atmospheric pressure, respectively. CONCLUSIONS: This is the first report concerning the enzymatic hydrolysis of isoquercetin in tartary buckwheat at HHP.


Asunto(s)
Fagopyrum/química , Glicósido Hidrolasas/metabolismo , Quercetina/análogos & derivados , Rutina/química , Cromatografía Líquida de Alta Presión , Calor , Concentración de Iones de Hidrógeno , Hidrólisis , Presión Hidrostática , Quercetina/análisis , Quercetina/aislamiento & purificación , Semillas/química
9.
BMC Biotechnol ; 15: 1, 2015 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-25636680

RESUMEN

BACKGROUND: Alkaline phosphatase (AP) catalyzes the hydrolytic cleavage of phosphate monoesters under alkaline conditions and plays important roles in microbial ecology and molecular biology applications. Here, we report on the first isolation and biochemical characterization of a thermolabile AP from a metagenome. RESULTS: The gene encoding a novel AP was isolated from a metagenomic library constructed with ocean-tidal flat sediments from the west coast of Korea. The metagenome-derived AP (mAP) gene composed of 1,824 nucleotides encodes a polypeptide with a calculated molecular mass of 64 kDa. The deduced amino acid sequence of mAP showed a high degree of similarity to other members of the AP family. Phylogenetic analysis revealed that the mAP is shown to be a member of a recently identified family of PhoX that is distinct from the well-studied classical PhoA family. When the open reading frame encoding mAP was cloned and expressed in recombinant Escherichia coli, the mature mAP was secreted to the periplasm and lacks an 81-amino-acid N-terminal Tat signal peptide. Mature mAP was purified to homogeneity as a monomeric enzyme with a molecular mass of 56 kDa. The purified mAP displayed typical features of a psychrophilic enzyme: high catalytic activity at low temperature and a remarkable thermal instability. The optimal temperature for the enzymatic activity of mAP was 37°C and complete thermal inactivation of the enzyme was observed at 65°C within 15 min. mAP was activated by Ca(2+) and exhibited maximal activity at pH 9.0. Except for phytic acid and glucose 1-phosphate, mAP showed phosphatase activity against various phosphorylated substrates indicating that it had low substrate specificity. In addition, the mAP was able to remove terminal phosphates from cohesive and blunt ends of linearized plasmid DNA, exhibiting comparable efficiency to commercially available APs that have been used in molecular biology. CONCLUSIONS: The presented mAP enzyme is the first thermolabile AP found in cold-adapted marine metagenomes and may be useful for efficient dephosphorylation of linearized DNA.


Asunto(s)
Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Sedimentos Geológicos/microbiología , Metagenoma , Fosfatasa Alcalina/química , Secuencia de Aminoácidos , Calcio/metabolismo , Clonación Molecular , Activación Enzimática , Estabilidad de Enzimas , Biblioteca de Genes , Datos de Secuencia Molecular , Filogenia , República de Corea , Alineación de Secuencia , Especificidad por Sustrato
10.
Bioresour Bioprocess ; 11(1): 9, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38647973

RESUMEN

The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min-1 mg-1. Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg2+, 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L-1) 2-KHB over 60 min with a volumetric productivity of 8.94 g L-1 h-1 and a specific productivity of 357.6 mg mg-enzyme-1 h-1. Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L-1) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L-1 h-1 and 583.4 mg mg-enzyme-1 h-1, respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyde.

11.
Appl Environ Microbiol ; 79(3): 982-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23204422

RESUMEN

Phosphosugar isomerases can catalyze the isomerization of not only phosphosugar but also of monosaccharides, suggesting that the phosphosugar isomerases can be used as sugar isomerases that do not exist in nature. Determination of active-site residues of phosphosugar isomerases, including ribose-5-phosphate isomerase from Clostridium difficile (CDRPI), mannose-6-phosphate isomerase from Bacillus subtilis (BSMPI), and glucose-6-phosphate isomerase from Pyrococcus furiosus (PFGPI), was accomplished by docking of monosaccharides onto the structure models of the isomerases. The determinant residues, including Arg133 of CDRPI, Arg192 of BSMPI, and Thr85 of PFGPI, were subjected to alanine substitutions and found to act as phosphate-binding sites. R133D of CDRPI, R192 of BSMPI, and T85Q of PFGPI displayed the highest catalytic efficiencies for monosaccharides at each position. These residues exhibited 1.8-, 3.5-, and 4.9-fold higher catalytic efficiencies, respectively, for the monosaccharides than the wild-type enzyme. However, the activities of these 3 variant enzymes for phosphosugars as the original substrates disappeared. Thus, R133D of CDRPI, R192 of BSMPI, and T85Q of PFGPI are no longer phosphosugar isomerases; instead, they are changed to a d-ribose isomerase, an l-ribose isomerase, and an l-talose isomerase, respectively. In this study, we used substrate-tailored optimization to develop novel sugar isomerases which are not found in nature based on phosphosugar isomerases.


Asunto(s)
Bacillus subtilis/enzimología , Clostridioides difficile/enzimología , Isomerasas/genética , Isomerasas/metabolismo , Monosacáridos/metabolismo , Pyrococcus furiosus/enzimología , Sustitución de Aminoácidos , Dominio Catalítico , Análisis Mutacional de ADN , Isomerasas/química , Cinética , Ingeniería Metabólica , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ingeniería de Proteínas
12.
J Agric Food Chem ; 71(10): 4328-4336, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36856566

RESUMEN

One-carbon chemicals (C 1s) are potential building blocks as they are cheap, sustainable, and abiotic components. Methanol-derived formaldehyde can be another versatile building block for the production of 2-keto-4-hydroxyacid derivatives that can be used for amino acids, hydroxy carboxylic acids, and chiral aldehydes. To produce 2-keto-4-hydroxybutyrate from C 1s in an environment-friendly way, we characterized an aldolase from Pseudomonas aeruginosa PAO1 (PaADL), which showed much higher catalytic activity in condensing formaldehyde and pyruvate than the reported aldolases. By applying a structure-based rational approach, we found a variant (PaADLV121A/L241A) that exhibited better catalytic activities than the wild-type enzyme. Next, we constructed a one-pot cascade biocatalyst system by combining PaADL and a methanol dehydrogenase (MDH) and, for the first time, effectively produced 2-keto-4-hydroxybutyrate as the main product from pyruvate and methanol via an enzymatic reaction. This simple process applied here will help design a green process for the production of 2-keto-4-hydroxyacid derivatives.


Asunto(s)
Fructosa-Bifosfato Aldolasa , Ácido Pirúvico , Fructosa-Bifosfato Aldolasa/metabolismo , Ácido Pirúvico/metabolismo , Metanol/metabolismo , Aldehído-Liasas/química , Formaldehído
13.
Appl Environ Microbiol ; 78(11): 3880-4, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22447612

RESUMEN

A triple-site variant (W17Q N90A L129F) of mannose-6-phosphate isomerase from Geobacillus thermodenitrificans was obtained by combining variants with residue substitutions at different positions after random and site-directed mutagenesis. The specific activity and catalytic efficiency (k(cat)/K(m)) for L-ribulose isomerization of this variant were 3.1- and 7.1-fold higher, respectively, than those of the wild-type enzyme at pH 7.0 and 70°C in the presence of 1 mM Co(2+). The triple-site variant produced 213 g/liter l-ribose from 300 g/liter L-ribulose for 60 min, with a volumetric productivity of 213 g liter(-1) h(-1), which was 4.5-fold higher than that of the wild-type enzyme. The k(cat)/K(m) and productivity of the triple-site variant were approximately 2-fold higher than those of the Thermus thermophilus R142N variant of mannose-6-phosphate isomerase, which exhibited the highest values previously reported.


Asunto(s)
Variación Genética , Geobacillus/enzimología , Manosa-6-Fosfato Isomerasa/genética , Manosa-6-Fosfato Isomerasa/metabolismo , Pentosas/metabolismo , Ribosa/biosíntesis , Biotecnología/métodos , Estabilidad de Enzimas , Geobacillus/genética , Calor , Concentración de Iones de Hidrógeno , Cinética , Mutagénesis Sitio-Dirigida
14.
Biotechnol Lett ; 34(1): 125-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21898127

RESUMEN

The specific activity of a recombinant ß-glucosidase from Sulfolobus solfataricus for isoflavones was: daidzin > glycitin > genistin > malonyl genistin > malonyl daidzin > malonyl glycitin. The hydrolytic activity of this enzyme for daidzin was highest at pH 5.5 and 90°C with a half-life of 18 h, a K (m) of 0.5 mM, and a k (cat) of 2532 s(-1). The enzyme converted 1 mM daidzin to 1 mM daidzein after 1 h with a molar yield of 100% and a productivity of 1 mM h(-1). Among ß-glucosidases, that from S. solfataricus ß had the highest thermostability, k (cat), k (cat)/K (m), conversion yield, and productivity in the hydrolysis of daidzin.


Asunto(s)
Glicósidos/metabolismo , Isoflavonas/metabolismo , Sulfolobus solfataricus/enzimología , beta-Glucosidasa/metabolismo , Estabilidad de Enzimas , Semivida , Concentración de Iones de Hidrógeno , Cinética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Temperatura
15.
Trends Biotechnol ; 40(2): 166-179, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34243985

RESUMEN

Plastic contamination currently threatens a wide variety of ecosystems and presents damaging repercussions and negative consequences for many wildlife species. Sustainable plastic waste management is an important approach to environmental protection and a necessity in the current life cycle of plastics in nature. Plastic biodegradation by microorganisms is a notable possible solution. This opinion article includes a proposal to use hypothetical P450 enzymes with an engineered active site as potent trigger biocatalysts to biodegrade polyethylene (PE) via in-chain hydroxylation into smaller products of linear aliphatic alcohols and alkanoic acids based on cascade enzymatic reactions. Furthermore, we propose the adoption of P450 into plastic-eating synthetic bacteria for PE biodegradation. This strategy can be applicable to other dense plastics, such as polypropylene (PP) and polystyrene (PS).


Asunto(s)
Ecosistema , Plásticos , Bacterias/metabolismo , Biodegradación Ambiental , Sistema Enzimático del Citocromo P-450/metabolismo , Plásticos/metabolismo
16.
Plants (Basel) ; 11(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35567244

RESUMEN

Cytosolic lipid droplets (LDs) derived from the endoplasmic reticulum (ER) mainly contain neutral lipids, such as triacylglycerols (TAGs) and sterol esters, which are considered energy reserves. The metabolic pathways associated with LDs in eukaryotic species are involved in diverse cellular functions. TAG synthesis in plants is mediated by the sequential involvement of two subcellular organelles, i.e., plastids - plant-specific organelles, which serve as the site of lipid synthesis, and the ER. TAGs and sterol esters synthesized in the ER are sequestered to form LDs through the cooperative action of several proteins, such as SEIPINs, LD-associated proteins, LDAP-interacting proteins, and plant-specific proteins such as oleosins. The integrity and stability of LDs are highly dependent on oleosins, especially in the seeds, and oleosin degradation is critical for efficient mobilization of the TAGs of plant LDs. As the TAGs mobilize in LDs during germination and post-germinative growth, a plant-specific lipase-sugar-dependent 1 (SDP1)-plays a major role, through the inter-organellar communication between the ER and peroxisomes. In this review, we briefly recapitulate the different processes involved in the biogenesis and degradation of plant LDs, followed by a discussion of future perspectives in this field.

17.
Antioxidants (Basel) ; 11(6)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35740077

RESUMEN

ß-Carotene 15,15'-oxygenase (BCO1) and ß-carotene 9',10'-oxygenase (BCO2) are potential producers of vitamin A derivatives, since they can catalyze the oxidative cleavage of dietary provitamin A carotenoids to retinoids and derivative such as apocarotenal. Retinoids are a class of chemical compounds that are vitamers of vitamin A or are chemically related to it, and are essential nutrients for humans and highly valuable in the food and cosmetics industries. ß-carotene oxygenases (BCOs) from various organisms have been overexpressed in heterogeneous bacteria, such as Escherichia coli, and their biochemical properties have been studied. For the industrial production of retinal, there is a need for increased production of a retinal producer and biosynthesis of retinal using biocatalyst systems improved by enzyme engineering. The current review aims to discuss BCOs from animal, plants, and bacteria, and to elaborate on the recent progress in our understanding of their functions, biochemical properties, substrate specificity, and enzyme activities with respect to the production of retinoids in whole-cell conditions. Moreover, we specifically propose ways to integrate BCOs into retinal biosynthetic bacterial systems to improve the performance of retinal production.

18.
Trends Biotechnol ; 40(3): 306-319, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34462144

RESUMEN

Aldol chemicals are synthesized by condensation reactions between the carbon units of ketones and aldehydes using aldolases. The efficient synthesis of diverse organic chemicals requires intrinsic modification of aldolases via engineering and design, as well as extrinsic modification through immobilization or combination with other catalysts. This review describes the development of aldolases, including their engineering and design, and the selection of desired aldolases using high-throughput screening, to enhance their catalytic properties and perform novel reactions. Aldolase-containing catalysts, which catalyze the aldol reaction combined with other enzymatic and/or chemical reactions, can efficiently synthesize diverse complex organic chemicals using inexpensive and simple materials as substrates. We also discuss the current challenges and emerging solutions for aldolase-based catalysts.


Asunto(s)
Aldehído-Liasas , Fructosa-Bifosfato Aldolasa , Aldehído-Liasas/química , Catálisis , Especificidad por Sustrato
19.
J Agric Food Chem ; 70(4): 1203-1211, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-34994555

RESUMEN

Enantiomerically pure d-amino acids are important intermediates as chiral building blocks for peptidomimetics and semisynthetic antibiotics. Here, a transcriptional factor-based screening strategy was used for the rapid screening of d-stereospecific amino acid amidase via an enzyme-specific amidophenol substrate. We used a d-threonine amidophenyl derivative to produce 2-aminophenol that serves as a putative enzyme indicator in the presence of d-threonine amidases. Comparative analyses of known bacterial species indicated that several Bacillus strains produce amidase and form putative indicators in culture media. The estimated amidase was cloned and subjected to rapid directed evolution through biosensor cells. Consequently, we characterized the F119A mutation that significantly improved the catalytic activity toward d-alanine, d-threonine, and d-glutamate. Its beneficial effects were confirmed by higher conversions and recurrent applications of the mutant enzyme, compared to the wild-type. This study showed that rapid directed evolution with biosensors coupled to designed substrates is useful to develop biocatalytic processes.


Asunto(s)
Bacillus , Técnicas Biosensibles , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Aminoácidos , Bacillus/genética , Bacillus/metabolismo , Mutación , Especificidad por Sustrato
20.
Appl Environ Microbiol ; 77(3): 762-7, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21115698

RESUMEN

An uncharacterized gene from Thermus thermophilus, thought to encode a mannose-6-phosphate isomerase, was cloned and expressed in Escherichia coli. The maximal activity of the recombinant enzyme for L-ribulose isomerization was observed at pH 7.0 and 75°C in the presence of 0.5 mM Cu(2+). Among all of the pentoses and hexoses evaluated, the enzyme exhibited the highest activity for the conversion of L-ribulose to L-ribose, a potential starting material for many L-nucleoside-based pharmaceutical compounds. The active-site residues, predicted according to a homology-based model, were separately replaced with Ala. The residue at position 142 was correlated with an increase in L-ribulose isomerization activity. The R142N mutant showed the highest activity among mutants modified with Ala, Glu, Tyr, Lys, Asn, or Gln. The specific activity and catalytic efficiency (k(cat)/K(m)) for L-ribulose using the R142N mutant were 1.4- and 1.6-fold higher than those of the wild-type enzyme, respectively. The k(cat)/K(m) of the R142N mutant was 3.8-fold higher than that of Geobacillus thermodenitrificans mannose-6-phosphate isomerase, which exhibited the highest activity to date for the previously reported k(cat)/K(m). The R142N mutant enzyme produced 213 g/liter L-ribose from 300 g/liter L-ribulose for 2 h, with a volumetric productivity of 107 g liter(-1) h(-1), which was 1.5-fold higher than that of the wild-type enzyme.


Asunto(s)
Biotecnología/métodos , Manosa-6-Fosfato Isomerasa , Mutación , Ribosa/biosíntesis , Thermus thermophilus/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Escherichia coli/genética , Concentración de Iones de Hidrógeno , Cinética , Manosa-6-Fosfato Isomerasa/química , Manosa-6-Fosfato Isomerasa/genética , Manosa-6-Fosfato Isomerasa/metabolismo , Pentosas , Especificidad por Sustrato , Temperatura , Thermus thermophilus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA