Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 24(10): 714-731, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37369853

RESUMEN

Nucleobase modifications are prevalent in eukaryotic mRNA and their discovery has resulted in the emergence of epitranscriptomics as a research field. The most abundant internal (non-cap) mRNA modification is N6-methyladenosine (m6A), the study of which has revolutionized our understanding of post-transcriptional gene regulation. In addition, numerous other mRNA modifications are gaining great attention because of their major roles in RNA metabolism, immunity, development and disease. In this Review, we focus on the regulation and function of non-m6A modifications in eukaryotic mRNA, including pseudouridine (Ψ), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), inosine, 5-methylcytidine (m5C), N4-acetylcytidine (ac4C), 2'-O-methylated nucleotide (Nm) and internal N7-methylguanosine (m7G). We highlight their regulation, distribution, stoichiometry and known roles in mRNA metabolism, such as mRNA stability, translation, splicing and export. We also discuss their biological consequences in physiological and pathological processes. In addition, we cover research techniques to further study the non-m6A mRNA modifications and discuss their potential future applications.


Asunto(s)
Eucariontes , Regulación de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Eucariontes/genética , Estabilidad del ARN/genética , Empalme del ARN/genética , Procesamiento Postranscripcional del ARN/genética
2.
Nat Immunol ; 23(10): 1433-1444, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36138184

RESUMEN

Naive T cells undergo radical changes during the transition from dormant to hyperactive states upon activation, which necessitates de novo protein production via transcription and translation. However, the mechanism whereby T cells globally promote translation remains largely unknown. Here, we show that on exit from quiescence, T cells upregulate transfer RNA (tRNA) m1A58 'writer' proteins TRMT61A and TRMT6, which confer m1A58 RNA modification on a specific subset of early expressed tRNAs. These m1A-modified early tRNAs enhance translation efficiency, enabling rapid and necessary synthesis of MYC and of a specific group of key functional proteins. The MYC protein then guides the exit of naive T cells from a quiescent state into a proliferative state and promotes rapid T cell expansion after activation. Conditional deletion of the Trmt61a gene in mouse CD4+ T cells causes MYC protein deficiency and cell cycle arrest, disrupts T cell expansion upon cognate antigen stimulation and alleviates colitis in a mouse adoptive transfer colitis model. Our study elucidates for the first time, to our knowledge, the in vivo physiological roles of tRNA-m1A58 modification in T cell-mediated pathogenesis and reveals a new mechanism of tRNA-m1A58-controlled T cell homeostasis and signal-dependent translational control of specific key proteins.


Asunto(s)
Colitis , ARN de Transferencia , Traslado Adoptivo , Animales , Proliferación Celular/genética , Colitis/genética , Ratones , Biosíntesis de Proteínas , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Linfocitos T/metabolismo
3.
Mol Cell ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39002544

RESUMEN

5-methylcytosine (m5C) is a prevalent RNA modification crucial for gene expression regulation. However, accurate and sensitive m5C sites identification remains challenging due to severe RNA degradation and reduced sequence complexity during bisulfite sequencing (BS-seq). Here, we report m5C-TAC-seq, a bisulfite-free approach combining TET-assisted m5C-to-f5C oxidation with selective chemical labeling, therefore enabling direct base-resolution m5C detection through pre-enrichment and C-to-T transitions at m5C sites. With m5C-TAC-seq, we comprehensively profiled the m5C methylomes in human and mouse cells, identifying a substantially larger number of confident m5C sites. Through perturbing potential m5C methyltransferases, we deciphered the responsible enzymes for most m5C sites, including the characterization of NSUN5's involvement in mRNA m5C deposition. Additionally, we characterized m5C dynamics during mESC differentiation. Notably, the mild reaction conditions and preservation of nucleotide composition in m5C-TAC-seq allow m5C detection in chromatin-associated RNAs. The accurate and robust m5C-TAC-seq will advance research into m5C methylation functional investigation.

4.
Mol Cell ; 83(1): 139-155.e9, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36521489

RESUMEN

Nonsense mutations, accounting for >20% of disease-associated mutations, lead to premature translation termination. Replacing uridine with pseudouridine in stop codons suppresses translation termination, which could be harnessed to mediate readthrough of premature termination codons (PTCs). Here, we present RESTART, a programmable RNA base editor, to revert PTC-induced translation termination in mammalian cells. RESTART utilizes an engineered guide snoRNA (gsnoRNA) and the endogenous H/ACA box snoRNP machinery to achieve precise pseudouridylation. We also identified and optimized gsnoRNA scaffolds to increase the editing efficiency. Unexpectedly, we found that a minor isoform of pseudouridine synthase DKC1, lacking a C-terminal nuclear localization signal, greatly improved the PTC-readthrough efficiency. Although RESTART induced restricted off-target pseudouridylation, they did not change the coding information nor the expression level of off-targets. Finally, RESTART enables robust pseudouridylation in primary cells and achieves functional PTC readthrough in disease-relevant contexts. Collectively, RESTART is a promising RNA-editing tool for research and therapeutics.


Asunto(s)
Codón sin Sentido , ARN , Animales , Codón sin Sentido/genética , ARN/metabolismo , Codón de Terminación/genética , Mutación , Biosíntesis de Proteínas , Mamíferos/metabolismo
5.
Mol Cell ; 83(8): 1280-1297.e11, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36924766

RESUMEN

RNA polymerase II (RNA Pol II) has been recognized as a passively regulated multi-subunit holoenzyme. However, the extent to which RNA Pol II subunits might be important beyond the RNA Pol II complex remains unclear. Here, fractions containing disassociated RPB3 (dRPB3) were identified by size exclusion chromatography in various cells. Through a unique strategy, i.e., "specific degradation of disassociated subunits (SDDS)," we demonstrated that dRPB3 functions as a regulatory component of RNA Pol II to enable the preferential control of 3' end processing of ribosomal protein genes directly through its N-terminal domain. Machine learning analysis of large-scale genomic features revealed that the little elongation complex (LEC) helps to specialize the functions of dRPB3. Mechanistically, dRPB3 facilitates CBC-PCF11 axis activity to increase the efficiency of 3' end processing. Furthermore, RPB3 is dynamically regulated during development and diseases. These findings suggest that RNA Pol II gains specific regulatory functions by trapping disassociated subunits in mammalian cells.


Asunto(s)
ARN Polimerasa II , Transcripción Genética , Animales , ARN Polimerasa II/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Subunidades de Proteína/genética , Mamíferos/metabolismo
6.
Nature ; 606(7915): 804-811, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35551512

RESUMEN

DddA-derived cytosine base editors (DdCBEs)-which are fusions of split DddA halves and transcription activator-like effector (TALE) array proteins from bacteria-enable targeted C•G-to-T•A conversions in mitochondrial DNA1. However, their genome-wide specificity is poorly understood. Here we show that the mitochondrial base editor induces extensive off-target editing in the nuclear genome. Genome-wide, unbiased analysis of its editome reveals hundreds of off-target sites that are TALE array sequence (TAS)-dependent or TAS-independent. TAS-dependent off-target sites in the nuclear DNA are often specified by only one of the two TALE repeats, challenging the principle that DdCBEs are guided by paired TALE proteins positioned in close proximity. TAS-independent off-target sites on nuclear DNA are frequently shared among DdCBEs with distinct TALE arrays. Notably, they co-localize strongly with binding sites for the transcription factor CTCF and are enriched in topologically associating domain boundaries. We engineered DdCBE to alleviate such off-target effects. Collectively, our results have implications for the use of DdCBEs in basic research and therapeutic applications, and suggest the need to thoroughly define and evaluate the off-target effects of base-editing tools.


Asunto(s)
Núcleo Celular , Citosina , Edición Génica , Mitocondrias , Mutación , Núcleo Celular/genética , Citosina/metabolismo , ADN Mitocondrial/genética , Mitocondrias/genética , Mitocondrias/metabolismo
7.
Mol Cell ; 77(2): 426-440.e6, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31676230

RESUMEN

N6-methyladenosine (m6A), the most abundant internal mRNA modification, and N6,2'-O-dimethyladenosine (m6Am), found at the first-transcribed nucleotide, are two reversible epitranscriptomic marks. However, the profiles and distribution patterns of m6A and m6Am across human and mouse tissues are poorly characterized. Here, we report the m6A and m6Am methylome through profiling of 43 human and 16 mouse tissues and demonstrate strongest tissue specificity for the brain tissues. A small subset of tissue-specific m6A peaks can also readily classify tissue types. The overall m6A and m6Am level is partially correlated with the expression level of their writers and erasers. Additionally, the m6A-containing regions are enriched for SNPs. Furthermore, cross-species analysis revealed that species rather than tissue type is the primary determinant of methylation. Collectively, our study provides an in-depth resource for dissecting the landscape and regulation of the m6A and m6Am epitranscriptomic marks across mammalian tissues.


Asunto(s)
ARN Mensajero/genética , Animales , Encéfalo/fisiología , Línea Celular , Línea Celular Tumoral , Células HEK293 , Células HT29 , Células HeLa , Humanos , Células Jurkat , Células K562 , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Polimorfismo de Nucleótido Simple/genética
8.
Nat Rev Mol Cell Biol ; 16(10): 581-5, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26285676

RESUMEN

Pseudouridylation is the most abundant internal post-transcriptional modification of stable RNAs, with fundamental roles in the biogenesis and function of spliceosomal small nuclear RNAs (snRNAs) and ribosomal RNAs (rRNAs). Recently, the first transcriptome-wide maps of RNA pseudouridylation were published, greatly expanding the catalogue of known pseudouridylated RNAs. These data have further implicated RNA pseudouridylation in the cellular stress response and, moreover, have established that mRNAs are also targets of pseudouridine synthases, potentially representing a novel mechanism for expanding the complexity of the cellular proteome.


Asunto(s)
Seudouridina/metabolismo , ARN Ribosómico/metabolismo , ARN Nuclear Pequeño/metabolismo , Transcriptoma/fisiología , Animales , Humanos
9.
RNA ; 30(5): 537-547, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38531648

RESUMEN

Over the past decade, advancements in epitranscriptomics have significantly enhanced our understanding of mRNA metabolism and its role in human development and diseases. This period has witnessed breakthroughs in sequencing technologies and the identification of key proteins involved in RNA modification processes. Alongside the well-studied m6A, Ψ and m1A have emerged as key epitranscriptomic markers. Initially identified through transcriptome-wide profiling, these modifications are now recognized for their broad impact on RNA metabolism and gene expression. In this Perspective, we focus on the detections and functions of Ψ and m1A modifications in mRNA and discuss previous discrepancies and future challenges. We summarize recent advances and highlight the latest sequencing technologies for stoichiometric detection and their mechanistic investigations for functional unveiling in mRNA as the new research directions.


Asunto(s)
Procesamiento Postranscripcional del ARN , Transcriptoma , Humanos , ARN Mensajero/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Perfilación de la Expresión Génica , ARN
10.
Nat Chem Biol ; 20(3): 277-290, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418907

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editors are powerful tools in biology and hold great promise for the treatment of human diseases. Advanced DNA base editing tools, such as cytosine base editor and adenine base editor, have been developed to correct permanent mistakes in genetic material. However, undesired off-target edits would also be permanent, which poses a considerable risk for therapeutics. Alternatively, base editing at the RNA level is capable of correcting disease-causing mutations but does not lead to lasting genotoxic effects. RNA base editors offer temporary and reversible therapies and have been catching on in recent years. Here, we summarize some emerging RNA editors based on A-to-inosine, C-to-U and U-to-pseudouridine changes. We review the programmable RNA-targeting systems as well as modification enzyme-based effector proteins and highlight recent technological breakthroughs. Finally, we compare editing tools, discuss limitations and opportunities, and provide insights for the future directions of RNA base editing.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Sistemas CRISPR-Cas/genética , ARN/genética , Mutagénesis Sitio-Dirigida , Genoma
11.
Nat Chem Biol ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553609

RESUMEN

Cytosine base editors (CBEs) are effective tools for introducing C-to-T base conversions, but their clinical applications are limited by off-target and bystander effects. Through structure-guided engineering of human APOBEC3A (A3A) deaminase, we developed highly accurate A3A-CBE (haA3A-CBE) variants that efficiently generate C-to-T conversion with a narrow editing window and near-background level of DNA and RNA off-target activity, irrespective of methylation status and sequence context. The engineered deaminase domains are compatible with PAM-relaxed SpCas9-NG variant, enabling accurate correction of pathogenic mutations in homopolymeric cytosine sites through flexible positioning of the single-guide RNAs. Dual adeno-associated virus delivery of one haA3A-CBE variant to a mouse model of tyrosinemia induced up to 58.1% editing in liver tissues with minimal bystander editing, which was further reduced through single dose of lipid nanoparticle-based messenger RNA delivery of haA3A-CBEs. These results highlight the tremendous promise of haA3A-CBEs for precise genome editing to treat human diseases.

12.
Nat Chem Biol ; 19(10): 1185-1195, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36997645

RESUMEN

Pseudouridine (Ψ) is an abundant post-transcriptional RNA modification in ncRNA and mRNA. However, stoichiometric measurement of individual Ψ sites in human transcriptome remains unaddressed. Here we develop 'PRAISE', via selective chemical labeling of Ψ by bisulfite to induce nucleotide deletion signature during reverse transcription, to realize quantitative assessment of the Ψ landscape in the human transcriptome. Unlike traditional bisulfite treatment, our approach is based on quaternary base mapping and revealed an ~10% median modification level for 2,209 confident Ψ sites in HEK293T cells. By perturbing pseudouridine synthases, we obtained differential mRNA targets of PUS1, PUS7, TRUB1 and DKC1, with TRUB1 targets showing the highest modification stoichiometry. In addition, we quantified known and new Ψ sites in mitochondrial mRNA catalyzed by PUS1. Collectively, we provide a sensitive and convenient method to measure transcriptome-wide Ψ; we envision this quantitative approach would facilitate emerging efforts to elucidate the function and mechanism of mRNA pseudouridylation.


Asunto(s)
Sulfitos , Transcriptoma , Humanos , Células HEK293 , ARN Mensajero/genética , ARN Mensajero/metabolismo , Procesamiento Postranscripcional del ARN , Seudouridina/genética , Seudouridina/metabolismo , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/genética
13.
Nat Chem Biol ; 19(1): 101-110, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36229683

RESUMEN

Adenine base editors (ABEs) catalyze A-to-G transitions showing broad applications, but their bystander mutations and off-target editing effects raise safety concerns. Through structure-guided engineering, we found ABE8e with an N108Q mutation reduced both adenine and cytosine bystander editing, and introduction of an additional L145T mutation (ABE9), further refined the editing window to 1-2 nucleotides with eliminated cytosine editing. Importantly, ABE9 induced very minimal RNA and undetectable Cas9-independent DNA off-target effects, which mainly installed desired single A-to-G conversion in mouse and rat embryos to efficiently generate disease models. Moreover, ABE9 accurately edited the A5 position of the protospacer sequence in pathogenic homopolymeric adenosine sites (up to 342.5-fold precision over ABE8e) and was further confirmed through a library of guide RNA-target sequence pairs. Owing to the minimized editing window, ABE9 could further broaden the targeting scope for precise correction of pathogenic single-nucleotide variants when fused to Cas9 variants with expanded protospacer adjacent motif compatibility. bpNLS, bipartite nuclear localization signals.


Asunto(s)
Adenina , Edición Génica , Animales , Ratones , Ratas , Mutación , Citosina , Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas
14.
Mol Cell ; 68(5): 993-1005.e9, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29107537

RESUMEN

Gene expression can be post-transcriptionally regulated via dynamic and reversible RNA modifications. N1-methyladenosine (m1A) is a recently identified mRNA modification; however, little is known about its precise location and biogenesis. Here, we develop a base-resolution m1A profiling method, based on m1A-induced misincorporation during reverse transcription, and report distinct classes of m1A methylome in the human transcriptome. m1A in 5' UTR, particularly those at the mRNA cap, associate with increased translation efficiency. A different, small subset of m1A exhibit a GUUCRA tRNA-like motif, are evenly distributed in the transcriptome, and are dependent on the methyltransferase TRMT6/61A. Additionally, we show that m1A is prevalent in the mitochondrial-encoded transcripts. Manipulation of m1A level via TRMT61B, a mitochondria-localizing m1A methyltransferase, demonstrates that m1A in mitochondrial mRNA interferes with translation. Collectively, our approaches reveal distinct classes of m1A methylome and provide a resource for functional studies of m1A-mediated epitranscriptomic regulation.


Asunto(s)
Adenosina/análogos & derivados , Núcleo Celular/metabolismo , Mitocondrias/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Imagen Individual de Molécula/métodos , Regiones no Traducidas 5' , Adenosina/metabolismo , Células HEK293 , Humanos , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Biosíntesis de Proteínas , Caperuzas de ARN , Interferencia de ARN , ARN Mensajero/genética , ARN de Transferencia/genética , Transfección , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
15.
BMC Genomics ; 25(1): 412, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671394

RESUMEN

BACKGROUND: Solanum aculeatissimum and Solanum torvum belong to the Solanum species, and they are essential plants known for their high resistance to diseases and adverse conditions. They are frequently used as rootstocks for grafting and are often crossbred with other Solanum species to leverage their resistance traits. However, the phylogenetic relationship between S. aculeatissimum and S. torvum within the Solanum genus remains unclear. Therefore, this paper aims to sequence the complete chloroplast genomes of S. aculeatissimum and S. torvum and analyze them in comparison with 29 other previously published chloroplast genomes of Solanum species. RESULTS: We observed that the chloroplast genomes of S. aculeatissimum and S. torvum possess typical tetrameric structures, consisting of one Large Single Copy (LSC) region, two reverse-symmetric Inverted Repeats (IRs), and one Small Single Copy (SSC) region. The total length of these chloroplast genomes ranged from 154,942 to 156,004 bp, with minimal variation. The highest GC content was found in the IR region, while the lowest was in the SSC region. Regarding gene content, the total number of chloroplast genes and CDS genes remained relatively consistent, ranging from 128 to 134 and 83 to 91, respectively. Nevertheless, there was notable variability in the number of tRNA genes and rRNAs. Relative synonymous codon usage (RSCU) analysis revealed that both S. aculeatissimum and S. torvum preferred codons that utilized A and U bases. Analysis of the IR boundary regions indicated that contraction and expansion primarily occurred at the junction between SSC and IR regions. Nucleotide polymorphism analysis and structural variation analysis demonstrated that chloroplast variation in Solanum species mainly occurred in the LSC and SSC regions. Repeat sequence analysis revealed that A/T was the most frequent base pair in simple repeat sequences (SSR), while Palindromic and Forward repeats were more common in long sequence repeats (LSR), with Reverse and Complement repeats being less frequent. Phylogenetic analysis indicated that S. aculeatissimum and S. torvum belonged to the same meristem and were more closely related to Cultivated Eggplant. CONCLUSION: These findings enhance our comprehension of chloroplast genomes within the Solanum genus, offering valuable insights for plant classification, evolutionary studies, and potential molecular markers for species identification.


Asunto(s)
Composición de Base , Genoma del Cloroplasto , Filogenia , Solanum , Solanum/genética , Solanum/clasificación , Uso de Codones , Análisis de Secuencia de ADN
16.
Nat Methods ; 18(6): 643-651, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34099937

RESUMEN

Cytosine base editors (CBEs) have the potential to correct human pathogenic point mutations. However, their genome-wide specificity remains poorly understood. Here we report Detect-seq for the evaluation of CBE specificity. It enables sensitive detection of CBE-induced off-target sites at the genome-wide level. Detect-seq leverages chemical labeling and biotin pulldown to trace the editing intermediate deoxyuridine, thereby revealing the editome of CBE. In addition to Cas9-independent and typical Cas9-dependent off-target sites, we discovered edits outside the protospacer sequence (that is, out-of-protospacer) and on the target strand (which pairs with the single-guide RNA). Such unexpected off-target edits are prevalent and can exhibit a high editing ratio, while their occurrences exhibit cell-type dependency and cannot be predicted based on the sgRNA sequence. Moreover, we found out-of-protospacer and target-strand edits nearby the on-target sites tested, challenging the general knowledge that CBEs do not induce proximal off-target mutations. Collectively, our approaches allow unbiased analysis of the CBE editome and provide a widely applicable tool for specificity evaluation of various emerging genome editing tools.


Asunto(s)
Citosina/metabolismo , Edición Génica/métodos , Sistemas CRISPR-Cas , Humanos , Células MCF-7 , Mutación , ARN/genética , Secuenciación Completa del Genoma
17.
Acc Chem Res ; 56(21): 2980-2991, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37851547

RESUMEN

Since the discovery of the first chemically modified RNA nucleotide in 1951, more than 170 types of chemical modifications have been characterized in RNA so far. Since the discovery of the reversible and dynamic nature of N6-methyladenosine (m6A) in mRNA modification, researchers have identified about ten modifications in eukaryotic mRNA; together with modifications on the noncoding RNAs, the term "epitranscriptome" has been coined to describe the ensemble of various chemical RNA modifications. The past decade has witnessed the discovery of many novel molecular functions of mRNA modifications, demonstrating their crucial roles in gene expression regulation. As the most abundant modifications in mRNA, the study of m6A and Ψ has been facilitated by innovative high-throughput sequencing technologies, which can be based on antibodies, enzymes, or novel chemistry. Among them, chemical-assisted methods utilize selective chemistry that can discriminate modified versus unmodified nucleotides, enabling the transcriptome-wide mapping of m6A and Ψ modifications and functional studies.Our group has developed several sequencing technologies to investigate these epitranscriptomic marks including m6A, Ψ, m1A, and m6Am. Among them, we have recently developed two methods for absolute quantification of m6A and Ψ in the transcriptome based on chemical reactivity to distinguish and measure the two modifications. In GLORI, we used glyoxal and nitrite to mediate efficient deamination of regular adenosine, while m6A remained unaffected, thereby enabling efficient and unbiased detection of single-base resolution and absolute quantification of m6A modification. In CeU-seq and PRAISE, we used different chemistry to achieve selective labeling and detection of transcriptome-wide Ψ. CeU-seq is based on an azido-derivatized carbodiimide compound, while PRAISE utilizes the unique activity of bisulfite to Ψ. PRAISE results in the formation of ring-opening Ψ-bisulfite adduct and quantitatively detects Ψ as 1-2 nt deletion signatures during sequencing. The resulting base-resolution and stoichiometric information expanded our understanding to the profiles of RNA modifications in the transcriptome. In particular, the quantitative information on RNA methylome is critical for characterizing the dynamic and reversible nature of RNA modifications, for instance, under environmental stress or during development. Additionally, base-resolution and stoichiometric information can greatly facilitate the analysis and characterization of functional modification sites that are important for gene expression regulation, especially when one modification type may have multiple or even opposing functions within a specific transcript. Together, the quantitative profiling methods provide the modification stoichiometry information, which is critical to study the regulatory roles of RNA modifications.In this Account, we will focus on the quantitative sequencing technologies of m6A and Ψ developed in our group, review recent advances in chemical-assisted reactions for m6A and Ψ detection, and discuss the challenges and future opportunities of transcriptome-wide mapping technologies for RNA modifications.


Asunto(s)
ARN , Transcriptoma , ARN/química , Sulfitos , ARN Mensajero , Procesamiento Postranscripcional del ARN
18.
Nat Chem Biol ; 18(1): 29-37, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34711981

RESUMEN

The recently reported prime editor (PE) can produce all types of base substitution, insertion and deletion, greatly expanding the scope of genome editing. However, improving the editing efficiency and precision of PE represents a major challenge. Here, we report an approach termed the homologous 3' extension mediated prime editor (HOPE). HOPE uses paired prime editing guide RNAs (pegRNAs) encoding the same edits in both sense and antisense DNA strands to achieve high editing efficiency in human embryonic kidney 293T cells as well as mismatch repair-deficient human colorectal carcinoma 116 cells. In addition, we found that HOPE shows greatly improved product purity compared to the original PE3 system. We envision that this enhanced tool could broaden both fundamental research and therapeutic applications of prime editing.


Asunto(s)
Edición de ARN , ARN Guía de Kinetoplastida/genética , Sistemas CRISPR-Cas , Células HEK293 , Humanos
19.
Haematologica ; 108(10): 2677-2689, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37165848

RESUMEN

Aged hematopoietic stem cells (HSC) exhibit compromised reconstitution capacity and differentiation-bias towards myeloid lineage, however, the molecular mechanism behind it remains not fully understood. In this study, we observed that the expression of pseudouridine (Ψ) synthase 10 is increased in aged hematopoietic stem and progenitor cells (HSPC) and enforced protein of Ψ synthase 10 (PUS10) recapitulates the phenotype of aged HSC, which is not achieved by its Ψ synthase activity. Consistently, we observed no difference of transcribed RNA pseudouridylation profile between young and aged HSPC. No significant alteration of hematopoietic homeostasis and HSC function is observed in young Pus10-/- mice, while aged Pus10-/- mice exhibit mild alteration of hematopoietic homeostasis and HSC function. Moreover, we observed that PUS10 is ubiquitinated by E3 ubiquitin ligase CRL4DCAF1 complex and the increase of PUS10 in aged HSPC is due to aging-declined CRL4DCAF1- mediated ubiquitination degradation signaling. Taken together, this study for the first time evaluated the role of PUS10 in HSC aging and function, and provided a novel insight into HSC rejuvenation and its clinical application.


Asunto(s)
Transferasas Intramoleculares , ARN , Animales , Ratones , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Células Madre Hematopoyéticas/metabolismo , Envejecimiento
20.
Methods ; 203: 242-248, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34624505

RESUMEN

Reversible and dynamic RNA modifications play important roles in fine-tuning gene expression. N6, 2'-O-dimethyladenosine (m6Am), a terminal modification at mRNA cap, mediates various biological effects. However, limitations of the current m6Am detection methods lead to a lack of potential applications. Here, we describe a specific and sensitive method, termed m6Am-seq, that can detect m6Am at single-base resolution. m6Am-seq is based on optimized in-vitro demethylation assay and RNA immunoprecipitation, which can distinguish m6Am from 5'-UTR m6A. We provide a step by step protocol to perform m6Am-seq, including experimental procedures and sequencing data analysis. Collectively, we describe m6Am-seq, a robust tool to reveal both m6Am and 5'-UTR m6A methylome, enabling further functional and mechanistic study of m6Am modification.


Asunto(s)
Adenosina , ARN , Adenosina/metabolismo , Inmunoprecipitación , Metilación , ARN/genética , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA