Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34050020

RESUMEN

Genes that are primarily expressed in cochlear glia-like supporting cells (GLSs) have not been clearly associated with progressive deafness. Herein, we present a deafness locus mapped to chromosome 3p25.1 and an auditory neuropathy spectrum disorder (ANSD) gene, TMEM43, mainly expressed in GLSs. We identify p.(Arg372Ter) of TMEM43 by linkage analysis and exome sequencing in two large Asian families segregating ANSD, which is characterized by inability to discriminate speech despite preserved sensitivity to sound. The knock-in mouse with the p.(Arg372Ter) variant recapitulates a progressive hearing loss with histological abnormalities in GLSs. Mechanistically, TMEM43 interacts with the Connexin26 and Connexin30 gap junction channels, disrupting the passive conductance current in GLSs in a dominant-negative fashion when the p.(Arg372Ter) variant is introduced. Based on these mechanistic insights, cochlear implant was performed on three subjects, and speech discrimination was successfully restored. Our study highlights a pathological role of cochlear GLSs by identifying a deafness gene and its causal relationship with ANSD.


Asunto(s)
Codón sin Sentido , Conexinas/metabolismo , Genes Dominantes , Pérdida Auditiva Central/genética , Proteínas de la Membrana/genética , Animales , Implantación Coclear , Femenino , Pérdida Auditiva Central/metabolismo , Pérdida Auditiva Central/fisiopatología , Pérdida Auditiva Central/cirugía , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Linaje , Percepción del Habla
2.
J Nanosci Nanotechnol ; 19(2): 915-921, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30360172

RESUMEN

Obesity is a metabolic disorder associated with chronic oxidative stress and inflammation. Recruitment of inflammatory cells to adipose tissue and subsequent production of a large amount of reactive oxygen species (ROS) facilitates adipocyte differentiation and promotes lipid accumulation. The removal of ROS with anti-oxidants appeared an effective strategy against lipid accumulation. Here, we chose Citrus junos, a good dietary source of anti-oxidants and tested the anti-adipogenic potential of Citrus junos extract (CE). CE effectively suppressed the ROS production and lipid accumulation in H2O2-stimulated 3T3-L1 cells. CE also inhibited the expression of CEBP-α and PPAR-γ, the transcription regulators of adipocyte differentiation. These data suggest that CE might suppress the adipocyte differentiation through ROS scavenging action. Also, CE and Garcinia cambogia extract (GE) appeared act additively in reducing ROS and in inhibiting lipid accumulation. It implied a potential usefulness of this combination in the management of obesity related disorders.


Asunto(s)
Citrus , Garcinia cambogia , Células 3T3-L1 , Adipocitos , Adipogénesis , Animales , Diferenciación Celular , Frutas , Peróxido de Hidrógeno , Metabolismo de los Lípidos , Ratones , Estrés Oxidativo , Extractos Vegetales/farmacología
3.
J Nanosci Nanotechnol ; 18(2): 887-892, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29448511

RESUMEN

Percutaneous delivery of growth factors is often used to treat wounds, and for cosmetic purposes, as a way of accelerating healing and skin regeneration, respectively. However, the therapeutic effects of growth factors are diminished by their poor absorption when delivered percutaneously, in addition to their rapid degradation by proteinases. To overcome these obstacles, we constructed two skin-permeable compounds. Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor-A (VEGF-A) were both genetically paired with low-molecular-weight protamine (LMWP), to yield the compounds LMWP-bFGF and LMWP-VEGF-A, respectively. The molecular weights and N-terminal amino acid sequences of LMWP-bFGF and LMWP-VEGF-A confirmed that the N-terminus-specific conjugation of LMWP with bFGF and VEGF-A had been successful. The biological abilities of the native factors to stimulate human fibroblast (CCD-986sk) and endothelial cell proliferation were preserved. Both compounds significantly promoted wound (scratch) recovery and enhanced procollagen type I C-peptide synthesis in CCD-986sk cells (to levels 184 and 133% those of the native compounds, respectively). The LMWP-conjugated growth factors were significantly more permeable than the native forms (by 7.29- and 29.22-fold, respectively). Finally, encapsulation of the compounds in positively charged elastic nanoliposomes (115 ± 1.54 nm in diameter with a zeta potential of 57.2 ± 3.05 mV) further improved both permeation and stability. Thus, nanoliposomes loaded with LMWP-conjugated growth factors are expected to enhance skin regeneration; the materials will find applications in wound-healing therapies and anti-wrinkle cosmetics.


Asunto(s)
Sistemas de Liberación de Medicamentos , Liposomas , Nanocompuestos , Factor A de Crecimiento Endotelial Vascular/administración & dosificación , Cicatrización de Heridas , Humanos , Protaminas , Piel , Absorción Cutánea , Factor A de Crecimiento Endotelial Vascular/farmacocinética
4.
J Nanosci Nanotechnol ; 17(4): 2390-393, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29648421

RESUMEN

TMEM16A is a Ca²âº-activated Cl⁻ channel found in secretory glands, GI and respiratory tracts, and sensory organs, playing a major physiological role in fluid secretion, autonomous GI motility, and sensory transduction. In addition, overexpression of TMEM16A has been associated with cancer cell proliferation and invasion. Suppression of upregulated TMEM16A has been proposed as an effective anti-cancer strategy. While searching for a potential TMEM16A inhibitor, components of rice bran attracted our attention due to their anti-cancer potential in colon cancer cells, a type of cells known to overexpressing TMEM16A. Here, it was tested whether rice bran extract exhibits anti-TMEM16A activity. Rice bran extract was tested in the neonatal rat cochlear tissues where TMEM16A-involved spontaneous activity is generated as a part of normal development of the auditory pathway. Rice bran extract readily inhibited the TMEM16A-involved activity in the cochlear tissues and the effect was reversible upon washout. Taken together, rice bran extract appears to contain a putative TMEM16A inhibitor and the rice byproduct might serve as a source of a new anti-cancer agent.


Asunto(s)
Anoctamina-1/metabolismo , Cóclea/efectos de los fármacos , Oryza/química , Extractos Vegetales/farmacología , Animales , Animales Recién Nacidos , Anoctamina-1/antagonistas & inhibidores , Antineoplásicos/farmacología , Línea Celular Tumoral , Cóclea/crecimiento & desarrollo , Fibras de la Dieta , Ratas , Ratas Sprague-Dawley
5.
Exp Neurobiol ; 33(2): 68-76, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38724477

RESUMEN

In the auditory system, the spontaneous activity of cochlear inner hair cells (IHCs) is initiated by the release of ATP from inner supporting cells (ISCs). This ATP release sets off a cascade, activating purinergic autoreceptors, opening of Ca2+-activated Cl- channel TMEM16A, Cl- efflux and osmotic cell shrinkage. Then, the shrunken ISCs efficiently regain their original volume, suggesting the existence of mechanisms for refilling Cland K+, priming them for subsequent activity. This study explores the potential involvement of NKCCs (Na+-K+-Cl- cotransporters) and KCCs (K+-Cl- cotransporters) in ISC spontaneous activity, considering their capability to transport both Cl- and K+ ions across the cell membrane. Employing a combination of immunohistochemistry, pharmacological interventions, and shRNA experiment, we unveiled the pivotal role of NKCC1 in cochlear spontaneous activity. Immunohistochemistry revealed robust NKCC1 expression in ISCs, persisting until the 2nd postnatal week. Intriguingly, we observed a developmental shift in NKCC1 expression from ISCs to synaptophysin-positive efferent terminals at postnatal day 18, hinting at its potential involvement in modulating synaptic transmission during the post-hearing period. Experiments using bumetanide, a well-known NKCC inhibitor, supported the functional significance of NKCC1 in ISC spontaneous activity. Bumetanide significantly reduced the frequency of spontaneous extracellular potentials (sEP) and spontaneous optical changes (sOCs) in ISCs. NKCC1-shRNA experiments conducted in cultured cochlear tissues further supported these findings, demonstrating a substantial decrease in event frequency and area. Taken together, we revealed the role of NKCC1 in shaping the ISC spontaneous activity that govern auditory pathway development.

6.
Nature ; 450(7166): 50-5, 2007 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17972875

RESUMEN

Spontaneous activity in the developing auditory system is required for neuronal survival as well as the refinement and maintenance of tonotopic maps in the brain. However, the mechanisms responsible for initiating auditory nerve firing in the absence of sound have not been determined. Here we show that supporting cells in the developing rat cochlea spontaneously release ATP, which causes nearby inner hair cells to depolarize and release glutamate, triggering discrete bursts of action potentials in primary auditory neurons. This endogenous, ATP-mediated signalling synchronizes the output of neighbouring inner hair cells, which may help refine tonotopic maps in the brain. Spontaneous ATP-dependent signalling rapidly subsides after the onset of hearing, thereby preventing this experience-independent activity from interfering with accurate encoding of sound. These data indicate that supporting cells in the organ of Corti initiate electrical activity in auditory nerves before hearing, pointing to an essential role for peripheral, non-sensory cells in the development of central auditory pathways.


Asunto(s)
Vías Auditivas/crecimiento & desarrollo , Vías Auditivas/fisiología , Percepción Auditiva/fisiología , Células Ciliadas Auditivas/fisiología , Audición/fisiología , Potenciales de Acción/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Vías Auditivas/efectos de los fármacos , Percepción Auditiva/efectos de los fármacos , Calcio/metabolismo , Forma de la Célula/efectos de los fármacos , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Audición/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
7.
Neuron ; 57(2): 263-75, 2008 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-18215623

RESUMEN

The expression of unconventional vesicular glutamate transporter VGLUT3 by neurons known to release a different classical transmitter has suggested novel roles for signaling by glutamate, but this distribution has raised questions about whether the protein actually contributes to glutamate release. We now report that mice lacking VGLUT3 are profoundly deaf due to the absence of glutamate release from hair cells at the first synapse in the auditory pathway. The early degeneration of some cochlear ganglion neurons in knockout mice also indicates an important developmental role for the glutamate released by hair cells before the onset of hearing. In addition, the mice exhibit primary, generalized epilepsy that is accompanied by remarkably little change in ongoing motor behavior. The glutamate release conferred by expression of VGLUT3 thus has an essential role in both function and development of the auditory pathway, as well as in the control of cortical excitability.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/deficiencia , Pérdida Auditiva Sensorineural/genética , Convulsiones/genética , Estimulación Acústica/métodos , Animales , Animales Recién Nacidos , Calcio/metabolismo , Modelos Animales de Enfermedad , Estimulación Eléctrica/métodos , Electroencefalografía/métodos , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/metabolismo , Células Ciliadas Auditivas/metabolismo , Pérdida Auditiva Sensorineural/etiología , Pérdida Auditiva Sensorineural/patología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión/métodos , Neuronas/patología , Neuronas/ultraestructura , Quinoxalinas/farmacología , Reflejo de Sobresalto/fisiología , Convulsiones/etiología , Ganglio Espiral de la Cóclea/patología
8.
Exp Neurobiol ; 31(4): 243-259, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36050224

RESUMEN

Cochlear afferent nerve fibers (ANF) are the first neurons in the ascending auditory pathway. We investigated the low-voltage activating K+ channels expressed in ANF dendrites using isolated rat cochlear segments. Whole cell patch clamp recordings were made from the dendritic terminals of ANFs. Outward currents activating at membrane potentials as low as -64 mV were observed in all dendrites studied. These currents were inhibited by 4-aminopyridine (4-AP), a blocker known to preferentially inhibit low-voltage activating K+ currents (IKL) in CNS auditory neurons and spiral ganglion neurons. When the dendritic IKL was blocked by 4-AP, the EPSP decay time was significantly prolonged, suggesting that dendritic IKL speeds up the decay of EPSPs and likely modulates action potentials of ANFs. To reveal molecular subtype of dendritic IKL, α-dendrotoxin (α-DTX), a selective inhibitor for Kv1.1, Kv1.2, and Kv1.6 containing channels, was tested. α-DTX inhibited 23±9% of dendritic IKL. To identify the α-DTXsensitive and α-DTX-insensitive components of IKL, immunofluorescence labeling was performed. Strong Kv1.1- and Kv1.2-immunoreactivity was found at unmyelinated dendritic segments, nodes of Ranvier, and cell bodies of most ANFs. A small fraction of ANF dendrites showed Kv7.2- immunoreactivity. These data suggest that dendritic IKL is conducted through Kv1.1and Kv1.2 channels, with a minor contribution from Kv7.2 and other as yet unidentified channels.

9.
J Neurosci ; 30(12): 4210-20, 2010 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-20335456

RESUMEN

Cochlear inner hair cells (IHCs) convert sounds into receptor potentials and via their ribbon synapses into firing rates in auditory nerve fibers. Multivesicular release at individual IHC ribbon synapses activates AMPA-mediated EPSCs with widely ranging amplitudes. The underlying mechanisms and specific role for multivesicular release in encoding sound are not well understood. Here we characterize the waveforms of individual EPSCs recorded from afferent boutons contacting IHCs and compare their characteristics in immature rats (postnatal days 8-11) and hearing rats (postnatal days 19-21). Two types of EPSC waveforms were found in every recording: monophasic EPSCs, with sharp rising phases and monoexponential decays, and multiphasic EPSCs, exhibiting inflections on rising and decaying phases. Multiphasic EPSCs exhibited slower rise times and smaller amplitudes than monophasic EPSCs. Both types of EPSCs had comparable charge transfers, suggesting that they were activated by the release of similar numbers of vesicles, which for multiphasic EPSCs occurred in a less coordinated manner. On average, a higher proportion of larger, monophasic EPSCs was found in hearing compared to immature rats. In addition, EPSCs became significantly faster with age. The developmental increase in size and speed could improve auditory signaling acuity. Multiphasic EPSCs persisted in hearing animals, in some fibers constituting half of the EPSCs. The proportion of monophasic versus multiphasic EPSCs varied widely across fibers, resulting in marked heterogeneity of amplitude distributions. We propose that the relative contribution of two modes of multivesicular release, generating monophasic and multiphasic EPSCs, may underlie fundamental characteristics of auditory nerve fibers.


Asunto(s)
Cóclea/citología , Potenciales Postsinápticos Excitadores/fisiología , Células Ciliadas Auditivas Internas/fisiología , Sinapsis/clasificación , Sinapsis/fisiología , Animales , Animales Recién Nacidos , Benzotiadiazinas/farmacología , Biofisica/métodos , Cóclea/crecimiento & desarrollo , Nervio Coclear/fisiología , Estimulación Eléctrica/métodos , Antagonistas de Aminoácidos Excitadores/farmacología , Audición/fisiología , Técnicas de Placa-Clamp/métodos , Quinoxalinas/farmacología , Ratas , Ratas Sprague-Dawley
10.
Exp Neurobiol ; 30(5): 319-328, 2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34737237

RESUMEN

The TMEM43 has been studied in human diseases such as arrhythmogenic right ventricular cardiomyopathy type 5 (ARVC5) and auditory neuropathy spectrum disorder (ANSD). In the heart, the p.(Ser358Leu) mutation has been shown to alter intercalated disc protein function and disturb beating rhythms. In the cochlea, the p.(Arg372Ter) mutation has been shown to disrupt connexin-linked function in glia-like supporting cells (GLSs), which maintain inner ear homeostasis for hearing. The TMEM43-p.(Arg372Ter) mutant knock-in mice displayed a significantly reduced passive conductance current in the cochlear GLSs, raising a possibility that TMEM43 is essential for mediating the passive conductance current in GLSs. In the brain, the two-pore-domain potassium (K2P) channels are generally known as the "leak channels" to mediate background conductance current, raising another possibility that K2P channels might contribute to the passive conductance current in GLSs. However, the possible association between TMEM43 and K2P channels has not been investigated yet. In this study, we examined whether TMEM43 physically interacts with one of the K2P channels in the cochlea, KCNK3 (TASK-1). Utilizing co-immunoprecipitation (IP) assay and Duolink proximity ligation assay (PLA), we revealed that TMEM43 and TASK-1 proteins could directly interact. Genetic modifications further delineated that the intracellular loop domain of TMEM43 is responsible for TASK-1 binding. In the end, gene-silencing of Task-1 resulted in significantly reduced passive conductance current in GLSs. Together, our findings demonstrate that TMEM43 and TASK-1 form a protein-protein interaction in the cochlea and provide the possibility that TASK-1 is a potential contributor to the passive conductance current in GLSs.

11.
J Neurophysiol ; 103(5): 2532-43, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20220080

RESUMEN

Synaptic transmission at the inner hair cell (IHC) afferent synapse, the first synapse in the auditory pathway, is specialized for rapid and reliable signaling. Here we investigated the properties of a hyperpolarization-activated current (I(h)), expressed in the afferent dendrite of auditory nerve fibers, and its role in shaping postsynaptic activity. We used whole cell patch-clamp recordings from afferent dendrites directly where they contact the IHC in excised postnatal rat cochlear turns. Excitatory postsynaptic potentials (EPSPs) of variable amplitude (1-35 mV) were found with 10-90% rise times of about 1 ms and time constants of decay of about 5 ms at room temperature. Current-voltage relations recorded in afferent dendrites revealed I(h). The pharmacological profile and reversal potential (-45 mV) indicated that I(h) is mediated by hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels. The HCN channel subunits HCN1, HCN2, and HCN4 were found to be expressed in afferent dendrites using immunolabeling. Raising intracellular cAMP levels sped up the activation kinetics, increased the magnitude of I(h) and shifted the half activation voltage (V(half)) to more positive values (-104 +/- 3 to -91 +/- 2 mV). Blocking I(h) with 50 microM ZD7288 resulted in hyperpolarization of the resting membrane potential (approximately 4 mV) and slowing the decay of the EPSP by 47%, suggesting that I(h) is active at rest and shortens EPSPs, thereby potentially improving rapid and reliable signaling at this first synapse in the auditory pathway.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Dendritas/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Células Ciliadas Auditivas Internas/fisiología , Canales de Potasio/metabolismo , Sinapsis/fisiología , Envejecimiento , Animales , Cóclea/efectos de los fármacos , Cóclea/crecimiento & desarrollo , Cóclea/fisiología , AMP Cíclico/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/antagonistas & inhibidores , Dendritas/efectos de los fármacos , Células Ciliadas Auditivas Internas/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Técnicas In Vitro , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/fisiología , Ratas , Ratas Sprague-Dawley , Sinapsis/efectos de los fármacos , Factores de Tiempo
12.
Exp Neurobiol ; 29(5): 344-355, 2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33154197

RESUMEN

Kv3 family K+ channels, by ensuring speedy repolarization of action potential, enable rapid and high frequency neuronal firing and high precision temporal coding of auditory information in various auditory synapses in the brain. Expression of different Kv3 subtypes within the auditory end organ has been reported. Yet, their precise role at the hair cell synaptic transmission has not been fully elucidated. Using immunolabeling and confocal microscopy we examined the expression pattern of different Kv3 family K+ channel subunits in the nerve fibers innervating the cochlear hair cells. Kv3.1b was found in NKA-positive type 1 afferent fibers, exhibiting high signal intensity at the cell body, the unmyelinated dendritic segment, first heminode and nodes of Ranvier. Kv3.3 signal was detected in the cell body and the unmyelinated dendritic segment of NKA-positive type 1 afferent fibers but not in peripherin-positive type 2 afferent. Kv3.4 was found in ChAT-positive LOC and MOC efferent fibers as well as peripherin-positive type 2 afferent fibers. Such segregated expression pattern implies that each Kv3 subunits participate in different auditory tasks, for example, Kv3.1b and Kv3.3 in ascending signaling while Kv3.4 in feedback upon loud noise exposure.

13.
J Nanosci Nanotechnol ; 20(9): 5515-5519, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32331128

RESUMEN

Hearing loss is one of the major complications of diabetes mellitus and significantly lowers the quality of life of diabetic patients. In studies using diabetic animal models hearing loss have been frequently associated with damages to cochlear afferent fibers. Recent studies suggested that cochlear afferent neurons are composed of heterogeneous populations and a subgroup of neurons equipped with low level of calretinin might be more vulnerable to various noxious stimuli such as noise and neurotoxins. Here, we tested if cochlear afferent neurons deficient in the Ca2+-buffering protein calretinin are more vulnerable to hyperglycemic insults. Streptozotocin-induced (50 mg/kg, i.p.) hyperglycemic mice (>250 mg/dl) were tested. The expression patterns of calretinin in peripheral processes and the cell bodies of cochlear afferent nerve fibers were examined using immunohistochemistry and confocal microscopy. The proportion of calretinin-poor cochlear afferent fibers was much lower in hyperglycemic mice compared to the normoglycemic control group. (30.0 vs. 55.5% in the peripheral process; 15.7 vs. 24.4 % in spiral ganglion neuron). The results suggest that calretinin-poor cochlear nerve fibers may be selectively lost after the hyperglycemic insults. The finding also supports a calretinin's neuroprotective role against diabetic neuropathy in cochlear afferent neurons.


Asunto(s)
Calbindina 2 , Cóclea/efectos de los fármacos , Hiperglucemia/patología , Fibras Nerviosas , Calidad de Vida , Animales , Hiperglucemia/inducido químicamente , Ratones , Ratones Obesos , Neuronas Aferentes , Estreptozocina
14.
Elife ; 92020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31975688

RESUMEN

Lateral olivocochlear (LOC) efferent neurons modulate auditory nerve fiber (ANF) activity using a large repertoire of neurotransmitters, including dopamine (DA) and acetylcholine (ACh). Little is known about how individual neurotransmitter systems are differentially utilized in response to the ever-changing acoustic environment. Here we present quantitative evidence in rodents that the dopaminergic LOC input to ANFs is dynamically regulated according to the animal's recent acoustic experience. Sound exposure upregulates tyrosine hydroxylase, an enzyme responsible for dopamine synthesis, in cholinergic LOC intrinsic neurons, suggesting that individual LOC neurons might at times co-release ACh and DA. We further demonstrate that dopamine down-regulates ANF firing rates by reducing both the hair cell release rate and the size of synaptic events. Collectively, our results suggest that LOC intrinsic neurons can undergo on-demand neurotransmitter re-specification to re-calibrate ANF activity, adjust the gain at hair cell/ANF synapses, and possibly to protect these synapses from noise damage.


Every day, we hear sounds that might be alarming, distracting, intriguing or calming ­ or simply just too loud. Our hearing system responds to these acoustic changes by fine-tuning sounds before they enter the brain. For example, if a noise is too loud, the volume can be turned down by dampening the signals nerve fibers in the ear send to the brain. This is thought to reduce the damage loud sounds can cause to the sensory organ inside the ear. A set of nerve cells located at the base of the brain called the lateral olivocochlear (LOC) neurons coordinate this adjustment to different volumes and sounds. When these neurons receive information on external sounds, they signal back to the hearing organs and adjust the activity of auditory nerve fibers that communicate this information to the brain. LOC neurons use a diverse range of molecules to modify the activity of auditory nerve fibers, including the 'feel-good' neurotransmitter dopamine. But it is unclear what role dopamine plays in this auditory feedback loop. To find out, Wu et al. studied the hearing system of mice that had been exposed to different levels of sound. This involved imaging LOC neurons stained with a marker for dopamine and measuring the activity of nerve fibers in the inner ear. The experiments showed that LOC neurons in mice that had recently been exposed to sound were covered in an enzyme that is essential for making dopamine. The louder the sound, the more of this enzyme was present, suggesting that the amount of dopamine released depends on the volume of the sound. LOC neurons release another neurotransmitter called acetylcholine, which stimulates activity in auditory nerve fibers. Wu et al. found that dopamine and acetylcholine are released from the same group of LOC neurons. However, dopamine had the opposite effect to acetylcholine and reduced nerve activity. These findings suggest that by controlling the mixture of neurotransmitters released, LOC neurons are able to fine-tune the activity of auditory nerve fibers in response to acoustic changes. This work provides a new insight into how our hearing system is able to perceive and relay changes in the sound environment. A better understanding of this auditory feedback loop could influence the design of implant devices for people with impaired hearing.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Nervio Coclear/metabolismo , Dopamina/biosíntesis , Neuronas Eferentes/metabolismo , Sonido , Animales , Células Ciliadas Auditivas Internas/metabolismo , Ratones , Ratas
15.
Environ Pollut ; 252(Pt A): 317-329, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31158660

RESUMEN

Fine dust (FD) is a form of air pollution and is responsible for a wide range of diseases. Specially, FD is associated with several cardiovascular diseases (CVDs); long-term exposure to FD was shown to decrease endothelial function, but the underlying mechanism remains unclear. We investigated whether exposure to FD causes premature senescence-associated endothelial dysfunction in endothelial cells (ECs) isolated from porcine coronary arteries. The cells were treated with different concentrations of FD and senescence associated-beta galactosidase (SA-ß-gal) activity, cell cycle progression, expression of endothelial nitric oxide synthase (eNOS), oxidative stress level, and vascular function were evaluated. We found that FD increased SA-ß-gal activity, caused cell cycle arrest, and increased oxidative stress, suggesting the premature induction of senescence; on the other hand, eNOS expression was downregulated and platelet aggregation was enhanced. FD exposure impaired vasorelaxation in response to bradykinin and activated the local angiotensin system (LAS), which was inhibited by treatment with the antioxidant N-acetyl cysteine (NAC) and angiotensin II receptor type 1 (AT1) antagonist losartan (LOS). NAC and LOS also suppressed FD-induced SA-ß-gal activity, increased EC proliferation and eNOS expression, and improved endothelial function. These results demonstrate that FD induces premature senescence of ECs and is associated with increased oxidative stress and activation of LAS. This study can serve as a pharmacological target for prevention and/or treatment of air pollution-associated CVD.


Asunto(s)
Contaminación del Aire/efectos adversos , Angiotensinas/metabolismo , Senescencia Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/fisiología , Material Particulado/farmacología , Receptor de Angiotensina Tipo 1/metabolismo , Acetilcisteína/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Antioxidantes/metabolismo , Plaquetas/citología , Puntos de Control del Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Vasos Coronarios/citología , Endotelio Vascular/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Losartán/farmacología , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Porcinos , beta-Galactosidasa/antagonistas & inhibidores , beta-Galactosidasa/metabolismo
16.
Exp Neurobiol ; 27(5): 397-407, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30429649

RESUMEN

The synaptic contacts of cochlear afferent fibers (CAFs) with inner hair cells (IHCs) are spatially segregated according to their firing properties. CAFs also exhibit spatially segregated vulnerabilities to noise. The CAF fibers contacting the modiolar side of IHCs tend to be more vulnerable. Noise vulnerability is thought to be due to the absence of neuroprotective mechanisms in the modiolar side contacting CAFs. In this study, we investigated whether the expression of neuroprotective Ca2+-buffering proteins is spatially segregated in CAFs. The expression patterns of calretinin, parvalbumin, and calbindin were examined in rat CAFs using immunolabeling. Calretinin-rich fibers, which made up ~50% of the neurofilament (NF)-positive fibers, took the pillar side course and contacted all IHC sides. NF-positive and calretinin-poor fibers took the modiolar side pathway and contacted the modiolar side of IHCs. Both fiber categories juxtaposed the C-terminal binding protein 2 (CtBP2) puncta and were contacted by synaptophysin puncta. These results indicated that the calretinin-poor fibers, like the calretinin-rich ones, were afferent fibers and probably formed functional efferent synapses. However, the other Ca2+-buffering proteins did not exhibit CAF subgroup specificity. Most CAFs near IHCs were parvalbumin-positive. Only the pillar-side half of parvalbumin-positive fibers coexpressed calretinin. Calbindin was not detected in any nerve fibers near IHCs. Taken together, of the Ca2+-buffering proteins examined, only calretinin exhibited spatial segregation at IHC-CAF synapses. The absence of calretinin in modiolar-side CAFs might be related to the noise vulnerability of the fibers.

17.
Pharmacogn Mag ; 14(54): 220-226, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29720835

RESUMEN

BACKGROUND: Inhibition of adipogenesis has been a therapeutic target for reducing obesity and obesity-related disorders such as diabetes, hypertension, atherosclerosis, and cancer. For decades, anti-adipogenic potential of many herbal extracts has been investigated. One example is Garcinia cambogia extract (GE) containing (-)-hydroxycitric acid as an active ingredient. GE is currently marketed as a weight loss supplement, used alone or with other ingredients. Pear pomace extract (PE), another natural product, has been also shown to have anti-adipogenic activity in a recent report. OBJECTIVE: It was tested if the mixture of PE and GE (MIX) would produce more effective anti-adipogenic activity than PE or GE alone. MATERIALS AND METHODS: Differentiation of 3T3-L1 preadipocyte was induced by adding insulin, dexamethasone, and isobutylmethylxanthine and lipid accumulation was measured by Oil Red O staining. Cellular markers for adipogenesis and lipolysis such as CCAAT/enhancer binding protein (C/EBP-α), peroxisome proliferator-activated receptor gamma (PPAR-γ), fatty acid synthase (FAS), and hormone-sensitive lipase (HSL) was measured using immunocytochemistry. RESULTS: MIX, compared to PE or GE alone, showed greater inhibition of lipid accumulation. Furthermore, MIX reduced the expression of adipogenesis-related factors C/EBP-α, PPAR-γ, and FAS more than PE or GE alone did. In contrast, the expression of HSL the enzyme required for lipolysis was further enhanced in MIX-treated adipocytes compared to the PE or GE alone treated groups. CONCLUSIONS: Anti-adipogenic effect of PE and GE appears synergistic, and the MIX may be a useful therapeutic combination for the treatment of obesity and obesity-related diseases. SUMMARY: PE and GE efficiently inhibited adipocyte differentiation by suppressing the expression of adipogenic transcription factor CEBP-α and PPAR-γ.PE and GE significantly decreased the expression of adipogenic enzyme FAS.PE and GE increased the expression of lipid degrading enzyme HSL.Mixture of PE and GE exhibited additive or moderately synergistic effect on adipocyte differentiation and lipid accumulation. Abbreviations used: CEBP-a: CCAT/enhancer binding protein alpha, CI: Combination Index, FAS: Fatty acid synthase, GE: Garcinia cambogia extract, HSL: Hormone sensitive lipase, PE: Pear pomace extract, PPAR-γ: Peroxisome proliferator-activated receptor gamma.

18.
J Neurosci ; 26(50): 13076-88, 2006 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-17167097

RESUMEN

After a yeast two-hybrid screen identified prosaposin as a potential interacting protein with the nicotinic acetylcholine receptor (nAChR) subunit alpha10, studies were performed to characterize prosaposin in the normal rodent inner ear. Prosaposin demonstrates diffuse organ of Corti expression at birth, with gradual localization to the inner hair cells (IHCs) and its supporting cells, inner pillar cells, and synaptic region of the outer hair cells (OHCs) and Deiters' cells (DCs) by postnatal day 21 (P21). Microdissected OHC and DC quantitative reverse transcriptase-PCR and immunohistology localizes prosaposin mRNA to DCs and OHCs, and protein predominantly to the apex of the DCs. Subsequent studies in a prosaposin knock-out (KO) (-/-) mouse showed intact but slightly reduced hearing through P19, but deafness by P25 and reduced distortion product otoacoustic emissions from P15 onward. Beginning at P12, the prosaposin KO mice showed histologic organ of Corti changes including cellular hypertrophy in the region of the IHC and greater epithelial ridge, a loss of OHCs from cochlear apex, and vacuolization of OHCs. Immunofluorescence revealed exuberant overgrowth of auditory afferent neurites in the region of the IHCs and proliferation of auditory efferent neurites in the region of the tunnel of Corti. IHC recordings from these KO mice showed normal I-V curves and responses to applied acetylcholine. Together, these results suggest that prosaposin helps maintain normal innervation patterns to the organ of Corti. Furthermore, prosaposin's overlapping developmental expression pattern and binding capacity toward the nAChR alpha10 suggest that alpha10 may also play a role in this function.


Asunto(s)
Cóclea/inervación , Cóclea/metabolismo , Sordera/metabolismo , Saposinas/deficiencia , Saposinas/genética , Estimulación Acústica/métodos , Animales , Animales Recién Nacidos , Cóclea/embriología , Cóclea/ultraestructura , Sordera/genética , Sordera/fisiopatología , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/ultraestructura , Células Ciliadas Auditivas Internas/embriología , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Externas/embriología , Células Ciliadas Auditivas Externas/metabolismo , Ratones , Ratones Noqueados , Órgano Espiral/metabolismo , Órgano Espiral/ultraestructura , Ratas , Ratas Sprague-Dawley , Saposinas/fisiología
19.
J Neurosci ; 26(29): 7659-64, 2006 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-16855093

RESUMEN

Ribbon synapses formed between inner hair cells (IHCs) and afferent dendrites in the mammalian cochlea can sustain high rates of release, placing strong demands on glutamate clearance mechanisms. To investigate the role of transporters in glutamate removal at these synapses, we made whole-cell recordings from IHCs, afferent dendrites, and glial cells adjacent to IHCs [inner phalangeal cells (IPCs)] in whole-mount preparations of rat organ of Corti. Focal application of the transporter substrate D-aspartate elicited inward currents in IPCs, which were larger in the presence of anions that permeate the transporter-associated anion channel and blocked by the transporter antagonist D,L-threo-beta-benzyloxyaspartate. These currents were produced by glutamate-aspartate transporters (GLAST) (excitatory amino acid transporter 1) because they were weakly inhibited by dihydrokainate, an antagonist of glutamate transporter-1 (excitatory amino acid transporter 2) and were absent from IPCs in GLAST-/- cochleas. Furthermore, D-aspartate-induced currents in outside-out patches from IPCs exhibited larger steady-state currents than responses elicited by L-glutamate, a prominent feature of GLAST, and examination of cochlea from GLAST-Discosoma red (DsRed) promoter reporter mice revealed that DsRed expression was restricted to IPCs and other supporting cells surrounding IHCs. Saturation of transporters by photolysis of caged D-aspartate failed to elicit transporter currents in IHCs, as did local application of D-aspartate to afferent terminals, indicating that neither presynaptic nor postsynaptic membranes are major sites for glutamate removal. These data indicate that GLAST in supporting cells is responsible for transmitter uptake at IHC afferent synapses.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/fisiología , Cóclea/fisiología , Ácido Glutámico/metabolismo , Células Ciliadas Auditivas Internas/fisiología , Sinapsis/metabolismo , Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Cóclea/metabolismo , Nervio Coclear/citología , Nervio Coclear/metabolismo , Dendritas/metabolismo , Conductividad Eléctrica , Ácido Glutámico/farmacocinética , Células Ciliadas Auditivas Internas/metabolismo , Técnicas In Vitro , Ratones , Ratones Transgénicos , Neuronas Aferentes/metabolismo , Neuronas Aferentes/ultraestructura , Órgano Espiral/citología , Órgano Espiral/metabolismo , Regiones Promotoras Genéticas/fisiología , Ratas
20.
Auton Neurosci ; 133(1): 19-34, 2007 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-17113358

RESUMEN

The parasympathetic (PNS) and sympathetic (SNS) and nervous systems densely innervate the exocrine pancreas. Efferent PNS pathways, consisting of central dorsal motor nucleus of the vagus (DMV) and peripheral pancreatic neurons, stimulate exocrine secretion. The DMV integrates cortical (olfactory, gustatory) and gastric, and intestinal vagal afferent input to determine central PNS outflow during cephalic, gastric and intestinal phases of exocrine secretion. Pancreatic neurons integrate DMV input with peripheral enteric, sympathetic, and, possibly, afferent axon reflexes to determine final PNS input to all exocrine effectors. Gut and islet hormones appear to modulate both central and peripheral PNS pathways. Preganglionic sympathetic neurons in the intermediolateral (IML) column of the spinal cord receive inputs from brain centers, some shared with the PNS, and innervate postganglionic neurons, mainly in prevertebral ganglia. Sympathetic innervation of the exocrine pancreas is primarily indirect, and inhibits secretion by decreasing blood flow and inhibiting transmission in pancreatic ganglia. Interactions between SNS and PNS pathways appear to occur in brain, spinal cord, pancreatic and prevertebral ganglia, and at neuroeffector synapses. Thus, the PNS and SNS pathways regulating the exocrine pancreas are directly or indirectly antagonistic at multiple sites: the state of exocrine secretion reflects the balance of these influences. Despite over a century of study, much remains to be understood about the connections of specific neurons forming pancreatic pathways, their processes of neurotransmission, and how disruption of these pathways contributes to pancreatic disease.


Asunto(s)
Vías Autónomas/fisiología , Vías Eferentes/fisiología , Páncreas/metabolismo , Animales , Humanos , Modelos Biológicos , Neuronas/clasificación , Neuronas/fisiología , Páncreas/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA