Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 503
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(21): 11717-11731, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37843130

RESUMEN

Fork reversal is a conserved mechanism to prevent stalled replication forks from collapsing. Formation and protection of reversed forks are two crucial steps in ensuring fork integrity and stability. Five RAD51 paralogs, namely, RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3, which share sequence and structural similarity to the recombinase RAD51, play poorly defined mechanistic roles in these processes. Here, using purified BCDX2 (RAD51BCD-XRCC2) and CX3 (RAD51C-XRCC3) complexes and in vitro reconstituted biochemical systems, we mechanistically dissect their functions in forming and protecting reversed forks. We show that both RAD51 paralog complexes lack fork reversal activities. Whereas CX3 exhibits modest fork protection activity, BCDX2 significantly synergizes with RAD51 to protect DNA against attack by the nucleases MRE11 and EXO1. DNA protection is contingent upon the ability of RAD51 to form a functional nucleoprotein filament on DNA. Collectively, our results provide evidence for a hitherto unknown function of RAD51 paralogs in synergizing with RAD51 nucleoprotein filament to prevent degradation of stressed replication forks.


Asunto(s)
Replicación del ADN , Recombinasa Rad51 , Línea Celular , Cromosomas/metabolismo , ADN/genética , ADN/metabolismo , Nucleoproteínas/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Humanos
2.
PLoS Genet ; 18(12): e1010545, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36512630

RESUMEN

Replication fork reversal which restrains DNA replication progression is an important protective mechanism in response to replication stress. PARP1 is recruited to stalled forks to restrain DNA replication. However, PARP1 has no helicase activity, and the mechanism through which PARP1 participates in DNA replication restraint remains unclear. Here, we found novel protein-protein interactions between PARP1 and DNA translocases, including HLTF, SHPRH, ZRANB3, and SMARCAL1, with HLTF showing the strongest interaction among these DNA translocases. Although HLTF and SHPRH share structural and functional similarity, it remains unclear whether SHPRH contains DNA translocase activity. We further identified the ability of SHPRH to restrain DNA replication upon replication stress, indicating that SHPRH itself could be a DNA translocase or a helper to facilitate DNA translocation. Although hydroxyurea (HU) and MMS induce different types of replication stress, they both induce common DNA replication restraint mechanisms independent of intra-S phase activation. Our results suggest that the PARP1 facilitates DNA translocase recruitment to damaged forks, preventing fork collapse and facilitating DNA repair.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Reparación del ADN/genética , Replicación del ADN/genética , ADN/genética , Daño del ADN/genética
3.
Immunology ; 172(3): 486-499, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38547355

RESUMEN

To explore the effect of K33 only mutant ubiquitin (K33O) on bone marrow-derived dendritic cells' (BMDCs') maturity, antigen uptake capability, surface molecule expressions and BMDC-mediated CTL priming, and further investigate the role of PI3K-Akt engaged in K33O-increased BMDC maturation, antigen uptake and presentation, surface molecule expressions and BMDC-based CTL priming. BMDCs were conferred K33O and other ubiquitin mutants (K33R, K48R, K63R-mutant ubiquitin) incubation or LY294002 and wortmannin pretreatment. PI3K-Akt phosphorylation, antigen uptake, antigenic presentation and CD86/MHC class I expression in BMDC were determined by western blot or flow cytometry. BMDC-based CTL proliferation and priming were determined by in vitro mixed lymphocyte reaction (MLR), ex vivo enzyme-linked immunospot assay (Elispot) and flow cytometry with intracellular staining, respectively. The treatment with K33O effectively augmented PI3K-Akt phosphorylation, BMDCs' antigen uptake, antigenic presentation, CD86/MHC class I and CD11c expressions. MLR, Elispot and flow cytometry revealed that K33O treatment obviously enhanced CTL proliferation, CTL priming and perforin/granzyme B expression. The pretreatment with PI3K-Akt inhibitors efficiently abrogated K33O's effects on BMDC. The replenishment of K33 only mutant ubiquitin augments BMDC-mediated CTL priming in bone marrow-derived dendritic cells via PI3K-Akt signalling.


Asunto(s)
Presentación de Antígeno , Células de la Médula Ósea , Células Dendríticas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Linfocitos T Citotóxicos , Ubiquitina , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ubiquitina/metabolismo , Linfocitos T Citotóxicos/inmunología , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Presentación de Antígeno/inmunología , Ratones Endogámicos C57BL , Fosforilación , Activación de Linfocitos , Diferenciación Celular , Mutación , Morfolinas/farmacología , Prueba de Cultivo Mixto de Linfocitos , Proliferación Celular , Antígeno B7-2/metabolismo , Antígeno B7-2/genética , Antígeno B7-2/inmunología , Células Cultivadas , Cromonas/farmacología , Wortmanina/farmacología , Androstadienos/farmacología
4.
J Am Chem Soc ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598684

RESUMEN

Cross-coupling reactions represent an indispensable tool in chemical synthesis. An intriguing challenge in this field is to achieve selective cross-coupling between two precursors with similar reactivity or, to the limit, the identical molecules. Here we report an unexpected dehydrobrominative cross-coupling between 1,3,5-tris(2-bromophenyl)benzene molecules on silver surfaces. Using scanning tunneling microscopy, we examine the reaction process at the single-molecular level, quantify the selectivity of the dehydrobrominative cross-coupling, and reveal the modulation of selectivity by substrate lattice-related catalytic activity or molecular assembly effect. Theoretical calculations indicate that the dehydrobrominative cross-coupling proceeds via regioselective C-H bond activation of debrominated TBPB and subsequent highly selective C-C coupling of the radical-based intermediates. The reaction kinetics plays an important role in the selectivity for the cross-coupling. This work not only expands the toolbox for chemical synthesis but also provides important mechanistic insights into the selectivity of coupling reactions on the surface.

5.
Oncologist ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821519

RESUMEN

BACKGROUND: Pegylated liposomal doxorubicin (PLD) is a liposome-encapsulated form of doxorubicin with equivalent efficacy and less cardiotoxicity. This phase 2 study evaluated the efficacy and safety of the PLD-containing CHOP regimen in newly diagnosed patients with aggressive peripheral T-cell lymphomas (PTCL). METHODS: Patients received PLD, cyclophosphamide, vincristine/vindesine, plus prednisone every 3 weeks for up to 6 cycles. The primary endpoint was the objective response rate at the end of treatment (EOT). RESULTS: From September 2015 to January 2017, 40 patients were treated. At the EOT, objective response was achieved by 82.5% of patients, with 62.5% complete response. As of the cutoff date (September 26, 2023), median progression-free survival (mPFS) and overall survival (mOS) were not reached (NR). The 2-year, 5-year, and 8-year PFS rates were 55.1%, 52.0%, and 52.0%. OS rate was 80.0% at 2 years, 62.5% at 5 years, and 54.3% at 8 years. Patients with progression of disease within 24 months (POD24) had worse prognosis than those without POD24, regarding mOS (41.2 months vs NR), 5-year OS (33.3% vs 94.4%), and 8-year OS (13.3% vs 94.4%). Common grade 3-4 adverse events were neutropenia (87.5%), leukopenia (80.0%), anemia (17.5%), and pneumonitis (17.5%). CONCLUSION: This combination had long-term benefits and manageable tolerability, particularly with less cardiotoxicity, for aggressive PTCL, which might provide a favorable benefit-risk balance. CLINICALTRIALS.GOV IDENTIFIER: Chinese Clinical Trial Registry, ChiCTR2100054588; IRB Approved: Ethics committee of Fudan University Shanghai Cancer Center (Date 2015.8.31/No. 1508151-13.

6.
Annu Rev Microbiol ; 73: 601-619, 2019 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-31283431

RESUMEN

The blast disease, caused by the ascomycete Magnaporthe oryzae, poses a great threat to rice production worldwide. Increasing use of fungicides and/or blast-resistant varieties of rice (Oryza sativa) has proved to be ineffective in long-term control of blast disease under field conditions. To develop effective and durable resistance to blast, it is important to understand the cellular mechanisms underlying pathogenic development in M. oryzae. In this review, we summarize the latest research in phototropism, autophagy, nutrient and redox signaling, and intrinsic phytohormone mimics in M. oryzae for cellular and metabolic adaptation(s) during its interactions with the host plants.


Asunto(s)
Interacciones Huésped-Patógeno , Magnaporthe/patogenicidad , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Adaptación Fisiológica , Ascomicetos/patogenicidad , Autofagia , Coevolución Biológica , Carbono/metabolismo , Relojes Circadianos/genética , Resistencia a la Enfermedad , Genes de Plantas , Glucosiltransferasas/metabolismo , Glucógeno/metabolismo , Magnaporthe/metabolismo , Nitrógeno/metabolismo , Oxidación-Reducción , Fototropismo , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Inmunidad de la Planta , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
7.
Support Care Cancer ; 32(3): 155, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38347229

RESUMEN

PURPOSE: Sleep problems are a significant issue in patients with lung cancer, and resilience is a closely related factor. However, few studies have identified subgroups of resilience and their relationship with sleep quality. This study aimed to investigate whether there are different profiles of resilience in patients with lung cancer, to determine the sociodemographic characteristics of each subgroup, and to determine the relationship between resilience and sleep quality in different subgroups. METHODS: A total of 303 patients with lung cancer from four tertiary hospitals in China completed the General Sociodemographic sheet, the Connor-Davidson Resilience Scale, and the Pittsburgh Sleep Quality Index. Latent profile analysis was applied to explore the latent profiles of resilience. Multivariate logistic regression was used to analyze the sociodemographic variables in each profile, and ANOVA was used to explore the relationships between resilience profiles and sleep quality. RESULTS: The following three latent profiles were identified: the "high-resilience group" (30.2%), the "moderate-resilience group" (46.0%), and the "low-resilience group" (23.8%). Gender, place of residence, and average monthly household income significantly influenced the distribution of resilience in patients with lung cancer. CONCLUSION: The resilience patterns of patients with lung cancer varied. It is suggested that health care providers screen out various types of patients with multiple levels of resilience and pay more attention to female, rural, and poor patients. Additionally, individual differences in resilience may provide an actionable means for addressing sleep problems.


Asunto(s)
Neoplasias Pulmonares , Pruebas Psicológicas , Resiliencia Psicológica , Trastornos del Sueño-Vigilia , Humanos , Femenino , Calidad del Sueño , Trastornos del Sueño-Vigilia/epidemiología , Trastornos del Sueño-Vigilia/etiología
8.
BMC Nurs ; 23(1): 172, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38481274

RESUMEN

BACKGROUND: The quality of transitional care is closely related to the health outcomes of patients, and understanding the status of transitional care for patients is crucial to improving the health outcomes of patients. Therefore, this study aims to investigate the quality of transitional care in elderly patients with chronic diseases and analyze its influencing factors, to provide a basis for improving transitional care services. METHODS: This is a cross-sectional study. We used the Chinese version of the Partners at Care Transitions Measure (PACT-M) to survey patients with chronic diseases aged 60 years and older who were about to be discharged from five tertiary hospitals in Henan and Shanxi provinces. We used the mean ± standard deviation to describe the quality of transitional care, t-test or one-way ANOVA, and regression analysis to explore the factors affecting the quality of transitional care for patients. RESULTS: 182 elderly patients with chronic diseases aged ≥ 60 years completed the PACT-M survey. The scores of PACT-M1 and PACT-M2 were (30.69 ± 7.87) and (25.59 ± 7.14) points, respectively. The results of the t-test or one-way ANOVA showed that the patient's marital status, ethnicity, religion, educational level, preretirement occupation, residence, household income per month, and living situation had an impact on the quality of transitional care for elderly patients with chronic diseases (P < 0.05). The results of regression analyses showed that patients' preretirement occupation, social support, and health status were the main influences on the quality of transitional care for elderly patients with chronic diseases (P < 0.05), and they explained 63.1% of the total variance. CONCLUSIONS: The quality of transitional care for older patients with chronic illnesses during the transition from hospital to home needs further improvement. Factors affecting the quality of transitional care included patients' pre-retirement occupation, social support, and health status. We can improve the hospital-community-family tertiary linkage service to provide coordinated and continuous transitional care for patients based on their occupation, health status, and social support to enhance the quality of transitional care and the patient's health.

9.
Angew Chem Int Ed Engl ; 63(13): e202315674, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38327006

RESUMEN

Sesquiterpene synthases (STPSs) catalyze carbocation-driven cyclization reactions that can generate structurally diverse hydrocarbons. The deprotonation-reprotonation process is widely used in STPSs to promote structural diversity, largely attributable to the distinct regio/stereoselective reprotonations. However, the molecular basis for reprotonation regioselectivity remains largely understudied. Herein, we analyzed two highly paralogous STPSs, Artabotrys hexapetalus (-)-cyperene synthase (AhCS) and ishwarane synthase (AhIS), which catalyze reactions that are distinct from the regioselective protonation of germacrene A (GA), resulting in distinct skeletons of 5/5/6 tricyclic (-)-cyperene and 6/6/5/3 tetracyclic ishwarane, respectively. Isotopic labeling experiments demonstrated that these protonations occur at C3 and C6 of GA in AhCS and AhIS, respectively. The cryo-electron microscopy-derived AhCS complex structure provided the structural basis for identifying different key active site residues that may govern their functional disparity. The structure-guided mutagenesis of these residues resulted in successful functional interconversion between AhCS and AhIS, thus targeting the three active site residues [L311-S419-C458]/[M311-V419-A458] that may act as a C3/C6 reprotonation switch for GA. These findings facilitate the rational design or directed evolution of STPSs with structurally diverse skeletons.


Asunto(s)
Transferasas Alquil y Aril , Sesquiterpenos , Microscopía por Crioelectrón , Sesquiterpenos/química , Catálisis , Dominio Catalítico , Transferasas Alquil y Aril/genética
10.
J Biol Chem ; 298(3): 101658, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35101449

RESUMEN

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has severely affected human lives around the world as well as the global economy. Therefore, effective treatments against COVID-19 are urgently needed. Here, we screened a library containing Food and Drug Administration (FDA)-approved compounds to identify drugs that could target the SARS-CoV-2 main protease (Mpro), which is indispensable for viral protein maturation and regard as an important therapeutic target. We identified antimalarial drug tafenoquine (TFQ), which is approved for radical cure of Plasmodium vivax and malaria prophylaxis, as a top candidate to inhibit Mpro protease activity. The crystal structure of SARS-CoV-2 Mpro in complex with TFQ revealed that TFQ noncovalently bound to and reshaped the substrate-binding pocket of Mpro by altering the loop region (residues 139-144) near the catalytic Cys145, which could block the catalysis of its peptide substrates. We also found that TFQ inhibited human transmembrane protease serine 2 (TMPRSS2). Furthermore, one TFQ derivative, compound 7, showed a better therapeutic index than TFQ on TMPRSS2 and may therefore inhibit the infectibility of SARS-CoV-2, including that of several mutant variants. These results suggest new potential strategies to block infection of SARS-CoV-2 and rising variants.


Asunto(s)
Aminoquinolinas , Antivirales , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus , SARS-CoV-2 , Aminoquinolinas/química , Aminoquinolinas/farmacología , Antivirales/química , Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Internalización del Virus/efectos de los fármacos
11.
Mol Carcinog ; 62(5): 652-664, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36752346

RESUMEN

Hydrogen sulfide (H2 S) has been widely recognized as one of gasotransmitters. Endogenous H2 S plays a crucial role in the progression of cancer. However, the effect of endogenous H2 S on the development of nasopharyngeal carcinoma (NPC) is still unknown. In this study, aminooxyacetic acid (AOAA, an inhibitor of cystathionine-ß-synthase), dl-propargylglycine (PAG, an inhibitor of cystathionine-γ-lyase), and l-aspartic acid (l-Asp, an inhibitor of 3-mercaptopyruvate sulfurtransferase) were adopted to detect the role of endogenous H2 S in NPC growth. The results indicated that the combine (PAG + AOAA + l-Asp) group had higher inhibitory effect on the growth of NPC cells than the PAG, AOAA, and l-Asp groups. There were similar trends in the levels of apoptosis and reactive oxygen species (ROS). In addition, the combine group exhibited lower levels of phospho (p)-extracellular signal-regulated protein kinase but higher expressions of p-p38 and p-c-Jun N-terminal kinase than those in the AOAA, PAG, and l-Asp groups. Furthermore, the combine group exerted more potent inhibitory effect on NPC xenograft tumor growth without obvious toxicity. In summary, suppression of endogenous H2 S generation could dramatically inhibit NPC growth via the ROS/mitogen-activated protein kinase pathway. Endogenous H2 S may be a novel therapeutic target in human NPC cells. Effective inhibitors for H2 S-producing enzymes could be designed and developed for NPC treatment.


Asunto(s)
Sulfuro de Hidrógeno , Neoplasias Nasofaríngeas , Humanos , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Cistationina , Carcinoma Nasofaríngeo , Especies Reactivas de Oxígeno , Sulfuros/farmacología , Neoplasias Nasofaríngeas/tratamiento farmacológico
12.
Appl Environ Microbiol ; 89(5): e0220822, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37093016

RESUMEN

Sporisorium scitamineum and Ustilago maydis are two fungal pathogens causing severe sugarcane and maize diseases, respectively. Sexual mating of compatible sporidia is essential for these pathogens to form infections dikaryotic mycelia and cause smut diseases. We showed recently that in the presence of exogenous glucose, the Pseudomonas sp. strain ST4 could block the fungal mating and display a strong disease suppression potency on S. scitamineum. With the aim of conferring strain ST4 the ability to metabolize sucrose in plants for glucose production, we identified a strong native promoter pSsrA in strain ST4 and additional promoter elements to facilitate translation and peptide translocation for the construction of a fusion gene encoding sucrose metabolism. The cscA gene encoding sucrose hydrolase from Pseudomonas protegens Pf-5 was fused to the promoter pSsrA, a translational coupler bicistronic design and a Tat signal peptide, which was then cloned into mini-Tn7 transposon. This synthetic gene cassette was integrated into the chromosome of strain ST4, and the resultant engineered strain ST4E was able to hydrolyze sucrose with high efficiency and displayed elevated inhibitory activity on the mating and virulence of S. scitamineum and U. maydis. The findings from this study provide a valuable device and useful clues for the engineering of sucrose metabolism in non- or weak-sucrose-utilizing bacterial strains and present an improved biocontrol agent against plant smut pathogens. IMPORTANCE Sporisorium scitamineum and Ustilago maydis are typical dimorphic fungi causing severe sugarcane and maize smut diseases, respectively. Sexual mating of compatible sporidia is essential for these pathogens to form infections dikaryotic mycelia and cause smut diseases. We previously demonstrated that the biocontrol strain Pseudomonas sp. ST4 could block the fungal mating and displays a strong suppression potency on smut diseases, while it was unable to utilize the host-sourced sucrose for glucose production critical for antifungus efficiency. In this study, we constructed a high-expression gene cassette for minitransposon-mediated genome integration and sucrose hydrolysis in the bacterial periplasmic space. The resultant engineered strain ST4E was able to hydrolyze sucrose and inhibit the mating and hyphal growth of S. scitamineum and U. maydis. These findings provide a valuable tool and useful clues for the engineering of sucrose metabolism in non- or weak-sucrose-utilizing bacterial strains and present an improved biocontrol agent against plant smut pathogens.


Asunto(s)
Basidiomycota , Saccharum , Ustilaginales , Ustilago , Ustilaginales/genética , Virulencia , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Saccharum/genética , Saccharum/metabolismo , Saccharum/microbiología , Ustilago/genética
13.
Mol Phylogenet Evol ; 186: 107860, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37329932

RESUMEN

Species richness is spatially heterogeneous even in the hyperdiverse tropical floras. The main cause of uneven species richness among the four tropical regions are hot debated. To date, higher net diversification rates and/or longer colonization time have been usually proposed to contribute to this pattern. However, there are few studies to clarify the species richness patterns in tropical terrestrial floras. The terrestrial tribe Collabieae (Orchidaceae) unevenly distributes in the tropical regions with a diverse and endemic center in Asia. Twenty-one genera 127 species of Collabieae and 26 DNA regions were used to reconstruct the phylogeny and infer the biogeographical processes. We compared the topologies, diversification rates and niche evolutionary rates of Collabieae and regional lineages on empirical samplings and different simulated samplings fractions respectively. Our results suggested that the Collabieae originated in Asia at the earliest Oligocene, and then independently spread to Africa, Central America, and Oceania since the Miocene via long-distance dispersal. These results based on empirical data and simulated data were similar. BAMM, GeoSSE and niche analyses inferred that the Asian lineages had higher net diversification and niche evolutionary rates than those of Oceanian and African lineages on the empirical and simulated analyses. Precipitation is the most important factor for Collabieae, and the Asian lineage has experienced more stable and humid climate, which may promote the higher net diversification rate. Besides, the longer colonization time may also be associated with the Asian lineages' diversity. These findings provided a better understanding of the regional diversity heterogeneity in tropical terrestrial herbaceous floras.


Asunto(s)
Orchidaceae , Filogenia , Orchidaceae/genética , Filogeografía , Clima Tropical
14.
Opt Express ; 31(19): 30285-30293, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37710573

RESUMEN

We investigate the femtosecond laser ablation of copper with a dual-color double-pulse femtosecond laser at the wavelengths of 515 nm and 1030 nm. By properly choosing the energy of the 515 nm pulse, the optical properties such as surface reflectivity and absorption coefficient on copper surface can be modified to increase the absorption of the subsequent 1030 nm pulse. The ablation depth of dual-color double-pulse laser is at least 50% higher than the total ablation depth of both the 515 nm and 1030 nm pulses, provided that the inter-pulse delay of the double-pulse laser is within the electron-phonon coupling time. The ablation depth enhancement on a copper surface using a dual-color double-pulse femtosecond laser is of significant interest for scientific research and industrial application.

15.
FASEB J ; 36(3): e22201, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35137449

RESUMEN

Oncogene activation, massive proliferation, and increased nutrient demands often result in nutrient and oxygen deprivation in solid tumors including breast cancer (BC), leading to the induction of oxidative stress and endoplasmic reticulum (ER) stress, and subsequently triggering integrated stress response (ISR). To elucidate the role of long non-coding RNAs (lncRNAs) in the ISR of BC, we performed transcriptome analyses and identified a lncRNA, UBA6-AS1, which was upregulated upon amino acid deprivation and ER stress. UBA6-AS1 was preferentially induced in triple-negative BC (TNBC) cells deprived of arginine or glutamine, two critical amino acids required for cancer cell growth, or treated with ER stress inducers. Mechanistically, UBA6-AS1 was regulated through the GCN2/eIF2α/ATF4 pathway, one of the major routes mediating ISR in amino acid sensing. In addition, both in vitro and in vivo assays indicated that UBA6-AS1 promoted TNBC cell survival when cells encountered metabolic stress, implicating a regulatory role of UBA6-AS1 in response to intratumoral metabolic stress during tumor progression. Moreover, PARP1 expression and activity were positively regulated by the GCN2/UBA6-AS1 axis upon amino acid deprivation. In conclusion, our data suggest that UBA6-AS1 is a novel lncRNA regulating ISR upon metabolic stress induction to promote TNBC cell survival. Furthermore, the GCN2-ATF4 axis is important for UBA6-AS1 induction to enhance PARP1 activity and could serve as a marker for the susceptibility of PARP inhibitors in TNBC.


Asunto(s)
Aminoácidos/deficiencia , Estrés del Retículo Endoplásmico , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Aminoácidos/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas Serina-Treonina Quinasas/genética , ARN sin Sentido , Neoplasias de la Mama Triple Negativas/genética
16.
Langmuir ; 39(26): 9239-9245, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37356112

RESUMEN

In order to preserve the coordinating ability of the hydrazide group, we used retrosynthetic analysis to design and synthesize ligand furan-2,5-dicarbohydrazide and its complex [Cu(FDCA)(H2O)ClO4]n(ClO4)n·nH2O (ECPs-1·H2O). The structure of the product was confirmed by single-crystal X-ray diffraction, infrared spectroscopy, and elemental analysis. The solvent-free target material ECPs-1 exhibited good thermal stability, sensitivity to mechanical stimuli, and excellent explosive properties. Furthermore, it had good potential for laser ignition and comparable detonation power to LA. The simple preparation method and inexpensive starting materials enriched the research on primary explosives.

17.
Inorg Chem ; 62(24): 9695-9701, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37289637

RESUMEN

In order to further explore the effect of ligands on the performance of primary explosives and gain a deeper understanding of the coordination mechanism, we designed furan-2-carbohydrazide (FRCA), a ligand, by using oxygen-containing heterocycles and carbohydrazide. Then, FRCA and Cu(ClO4)2 were used to synthesize coordination compounds [Cu(FRCA)2(H2O)(ClO4)2]·CH3OH (ECCs-1·CH3OH) and Cu(FRCA)2(H2O)(ClO4)2 (ECCs-1). The structure of the ECCs-1 was confirmed by single-crystal X-ray diffraction, IR and EA characterization. Further experiments on ECCs-1 show that ECCs-1 has good thermal stability, but is sensitive to mechanical stimuli (impact sensitivity = IS = 8 J, friction sensitivity = FS = 20 N). The predicted value of the detonation parameter is DEXPLO 5 = 6.6 km s-1, PEXPLO 5 = 18.8 GPa, but the ignition test, laser test, and lead plate detonation experiment show that ECCs-1 has excellent detonation performance, which is very worthy of attention.

18.
Inorg Chem ; 62(51): 21371-21378, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38047563

RESUMEN

Revamping the structure of energy storage is an efficient strategy for striking a balance between the performance and sensitivity of energetic materials to achieve high energy and reduced sensitivity. In continuation of prior research, this study utilized the ligand 3,5-dimethyl-1H-pyrazole-4-carbonhydrazide (DMPZCA) and innovatively designed and synthesized the compound ECCs [Cu(HDMPZCA)2(ClO4)2](ClO4)2·2H2O (ECCs-1·2H2O). Compared with the former research, solvent-free compound ECCs-1 refers to an innovative material characterized by a dual structure involving ionic salts and coordination compounds. Due to these unique structures, ECCs-1 exhibits an increased [ClO4-] content, a higher oxygen balance constant (OB = -7.9%), and improved mechanical sensitivity (IS = 8 J, FS = 32 N). Theoretical calculations support the superior detonation performance of ECCs-1. Additionally, experimental results confirm its ignition capability through lower-threshold lasers and highlight the outstanding initiation potential and explosive power, making it a suitable candidate for primary explosives.

19.
J Fluoresc ; 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37561367

RESUMEN

Widely utilized in the chemical industry and agriculture, hydrazine is easily absorbed by living things and can cause physical harm when in touch for an extended period of time. As a result, a novel cinnamaldehyde chalcone C5 was produced by Friedel Crafts process and aldol condensation reaction. Triphenylamine was used as the raw material for hydrazine determination in both reactions. Chalcone C5 exhibits significant AIE behavior in a mixed mixture of ethanol and water in addition to having great selectivity and a low detection limit (0.119 nm) for hydrazine. The solvent effect test revealed a linear relationship between the Stokes shift of C5 in the solvent and the rise in solvent orientation polarization. It is important to note that C5 is not harmful to MCF-7 cells, mouse kidney cells, or pig kidney cells. Furthermore, research on cell imaging has demonstrated that probe C5 may be utilized to image the fluorescence of hydrazine in active MCF-7 cells.

20.
J Phys Chem A ; 127(25): 5402-5413, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37311006

RESUMEN

Nitrous acid (HONO) is hazardous to the human respiratory system, and the hydrolysis of NO2 is the source of HONO. Hence, the investigation on the removal and transformation of HONO is urgently established. The effects of amide on the mechanism and kinetics of the formation of HONO with acetamide, formamide, methylformamide, urea, and its clusters of the catalyst were studied theoretically. The results show that amide and its small clusters reduce the energy barrier, the substituent improves the catalytic efficiency, and the catalytic effect order is dimer > monohydrate > monomer. Meanwhile, the clusters composed of nitric acid (HNO3), amides, and 1-6 water molecules were investigated in the amide-assisted nitrogen dioxide (NO2) hydrolysis reaction after HONO decomposes by combining the system sampling technique and density functional theory. The study on thermodynamics, intermolecular forces, optics properties of the clusters, as well as the influence of humidity, temperature, atmospheric pressure, and altitude shows that amide molecules promote the clustering and enhance the optical properties. The substituent facilitates the clustering of amide and nitric acid hydrate and lowers the humidity sensitivity of the clusters. The findings will help to control the atmospheric aerosol particle and then reduce the harm of poisonous organic chemicals on human health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA