Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Anal Chem ; 94(2): 1195-1202, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34964601

RESUMEN

Here, we report a biomarker-free detection of various biological targets through a programmed machine learning algorithm and an automated computational selection process termed algorithmically guided optical nanosensor selector (AGONS). The optical data processed/used by algorithms are obtained through a nanosensor array selected from a library of nanosensors through AGONS. The nanosensors are assembled using two-dimensional nanoparticles (2D-nps) and fluorescently labeled single-stranded DNAs (F-ssDNAs) with random sequences. Both 2D-np and F-ssDNA components are cost-efficient and easy to synthesize, allowing for scaled-up data collection essential for machine learning modeling. The nanosensor library was subjected to various target groups, including proteins, breast cancer cells, and lethal-7 (let-7) miRNA mimics. We have demonstrated that AGONS could select the most essential nanosensors while achieving 100% predictive accuracy in all cases. With this approach, we demonstrate that machine learning can guide the design of nanosensor arrays with greater predictive accuracy while minimizing manpower, material cost, computational resources, instrumentation usage, and time. The biomarker-free detection attribute makes this approach readily available for biological targets without any detectable biomarker. We believe that AGONS can guide optical nanosensor array setups, opening broader opportunities through a biomarker-free detection approach for most challenging biological targets.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Nanopartículas , Técnicas Biosensibles/métodos , ADN de Cadena Simple
2.
Anal Chem ; 93(4): 1934-1938, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33404234

RESUMEN

Hybridization chain reaction (HCR) is a DNA-based target-induced cascade reaction. Due to its unique enzyme-free amplification feature, HCR is often employed for sensing applications. Much like DNA nanostructures that have been designed to respond to a specific stimulus, HCR employs nucleic acids that reconfigure and assemble in the presence of a specific trigger. Despite its standalone capabilities, HCR is highly modular; therefore, it can be advanced and repurposed when coupled with latest discoveries. To this effect, we have developed a gel electrophoresis-based detection approach which combines the signal amplification feature of HCR with the programmability and sensitivity of the CRISPR-Cas12a system. By incorporating CRISPR-Cas12a, we have achieved greater sensitivity and reversed the signal output from TURN OFF to TURN ON. CRISPR-Cas12a also enabled us to rapidly reprogram the assay for the detection of both ssDNA and dsDNA target sequences by replacing a single reaction component in the detection kit. Detection of conserved, both ssDNA and dsDNA, regions of tobacco curly shoot virus (TCSV) and hepatitis B virus (HepBV) genomes is demonstrated with this methodology. This low-cost gel electrophoresis assay can detect as little as 1.5 fmol of the target without any additional target amplification steps and is about 100-fold more sensitive than HCR-alone approach.


Asunto(s)
Sistemas CRISPR-Cas , Electroforesis en Gel Bidimensional/métodos , Técnicas Biosensibles/métodos , ADN/química , Técnicas de Amplificación de Ácido Nucleico/métodos , Hibridación de Ácido Nucleico/métodos
3.
Chembiochem ; 22(4): 662-665, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33022809

RESUMEN

Two dimensional nanoparticles (2D-NPs) along with other nanoscale materials have been deemed to be the next generation of artificial enzymes (nanozymes). The low-cost bulk-scale production, ease of storage and modification of such nanomaterials have given nanozymes an advantage over traditional enzymes. Many studies have been aimed at developing methods to increase the performance of these nanozymes, and also identify interfering agents. To investigate the interference of a number of metal cations, we studied the effect of Ti2+ , Fe2+ , Ag+ , Hg2+ , Co2+ , Cu2+ , Ni2+ , Pb2+ , Ca2+ , Zn2+ and Mn2+ in a nanozyme assays of 2D-NPs using ABTS radical formation. Ti2+ , Co2+ , Cu2+ , Ni2+ , Ca2+ , Zn2+ and Mn2+ ions did not display any notable effect on the peroxidase-like activity of nGO, MoS2 and WS2 2D-NPs. However, Fe2+ , Ag+ , Hg2+ and Pb2+ ions' effects on the overall ABTS reaction were significant enough to be visualised by partial least square discriminant analysis (PLSDA). We report that, similar to that of many natural enzymes, the nanozyme activity of 2D-NPs is regulated by a number of metal cations allowing their identification and discrimination by using a statistical analysis tool.


Asunto(s)
Cationes/química , Nanopartículas del Metal/química , Metales/química , Molibdeno/química , Peroxidasa/metabolismo , Sulfuros/química , Compuestos de Tungsteno/química , Catálisis , Oxidación-Reducción , Peroxidasa/química
4.
Biochemistry ; 59(15): 1474-1481, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32233423

RESUMEN

The CRISPR-Cas12a nuclease shreds short single-stranded DNA (ssDNA) substrates indiscriminately through trans-cleavage upon activation with a specific target DNA. This shredding activity offered the potential for development of ssDNA-templated probes with fluorescent dye (F) and quencher (Q) labels. However, the formulations of double-stranded DNA (dsDNA)-templated fluorescent probes have not been reported possibly due to unknown (or limited) activity of Cas12a against short dsDNAs. The ssDNA probes have been shown to be powerful for diagnostic applications; however, limiting the probe selections to short ssDNAs could be restrictive from an application and probe diversification standpoint. Here, we report a dsDNA substrate (probe-full) for probing Cas12a trans-cleavage activity upon target detection. A diverse set of Cas12a substrates with alternating dsDNA character were designed and studied using fluorescence spectroscopy. We have observed that probe-full without any nick displayed trans-cleavage performance that was better than that of the form that contains a nick. Different experimental conditions of salt concentration, target concentration, and mismatch tolerance were examined to evaluate the probe performance. The activity of Cas12a was programmed for a dsDNA frame copied from a tobacco curly shoot virus (TCSV) or hepatitis B virus (HepBV) genome by using crRNA against TCSV or HepBV, respectively. While on-target activity offered detection of as little as 10 pM dsDNA target, off-target activity was not observed even at 1 nM control DNAs. This study demonstrates that trans-cleavage of Cas12a is not limited to ssDNA substrates, and Cas12a-based diagnostics can be extended to dsDNA substrates.


Asunto(s)
Proteínas Bacterianas/análisis , Proteínas Asociadas a CRISPR/análisis , ADN/química , Endodesoxirribonucleasas/análisis , Colorantes Fluorescentes/química , Sistemas CRISPR-Cas , Espectrometría de Fluorescencia
5.
Chembiochem ; 20(14): 1861-1867, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30198177

RESUMEN

Two-dimensional MoS2 nanoparticles (2D-nps) exhibit artificial enzyme properties that can be regulated at bio-nanointerfaces. We discovered that protein lipase is able to tune the peroxidase-like activity of MoS2 2D-nps, offering low-nanomolar, label-free detection and identification in samples with unknown identity. The inhibition of the peroxidase-like activity of the MoS2 2D-nps was demonstrated to be concentration dependent, and as low as 5 nm lipase was detected with this approach. The results were compared with those obtained with several other proteins that did not display any significant interference with the nanozyme behavior of the MoS2 2D-nps. This unique response of lipase was characterized and exploited for the successful identification of lipase in six unknown samples by using qualitative visual inspection and a quantitative statistical analysis method. The developed methodology in this approach is noteworthy for many aspects; MoS2 2D-nps are neither labeled with a signaling moiety nor modified with any ligands for signal readout. Only the intrinsic nanozyme activity of the MoS2 2D-nps is exploited for this detection approach. No analytical equipment is necessary for the visual detection of lipase. The synthesis of the water-soluble MoS2 2D-nps is low costing and can be performed in bulk scale. Exploring the properties of 2D-nps and their interactions with biological materials reveals highly interesting yet instrumental features that offer the development of novel bioanalytical approaches.


Asunto(s)
Catálisis/efectos de los fármacos , Disulfuros/química , Lipasa/análisis , Nanopartículas del Metal/química , Molibdeno/química , Bencidinas/química , Compuestos Cromogénicos/química , Colorimetría/métodos , Peróxido de Hidrógeno/química , Límite de Detección , Lipasa/química , Oxidación-Reducción , Peroxidasa/química
6.
Anal Chem ; 90(10): 6300-6306, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29677441

RESUMEN

A novel combinatorial nanosensor array for miRNA analyses was assembled using the intrinsic noncovalent interactions of unmodified two-dimensional nanoparticles. Discrimination of nine miRNA analogues with as little as a single nucleotide difference was demonstrated under 2 h. All nine targets were identified simultaneously with 95% confidence. The developed nanotechnology offered identification and quantification of unknown targets with unknown concentration. Discrimination of target mixtures from low-to-high ratios was demonstrated. The DNA and RNA analogues of targets were identified using the combinatorial sensory approach. Identification of a target in a complex biological matrix prepared with human urine was demonstrated. The nanosensor array was put together using 15 nanoassemblies (2D-NAs) constructed using three two-dimensional nanoparticles (2D-nps: WS2, MoS2, and nanographene oxide (nGO)) and five rationally designed fluorescently labeled 15-nt-long ssDNAs (probes). In this approach, each target has only a small yet varying degree of complementarity with each of the five probes adsorbed on the 2D-np surface. The probes in each 2D-NA are desorbed from the surface by each target with a different degree that was recorded with fluorescence recovery measurements. The fluorescence data set was processed by partial least squares discriminant analysis (PLSDA), and each target was discriminated successfully. This new approach has a number of advantages over the classical bind-and-release model, typically used for 2D-np based biosensors, and opens greater detection opportunities with 2D-nps.


Asunto(s)
Técnicas Biosensibles , Líquidos Corporales/química , MicroARNs/análisis , Nanopartículas/química , Nanotecnología , Humanos
7.
Langmuir ; 34(49): 14983-14992, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-29739192

RESUMEN

We have performed a systematic study to analyze the effect of ssDNA length, nucleobase composition, and the type of two-dimensional nanoparticles (2D-nps) on the desorption response of 36 two-dimensional nanoassemblies (2D-NAs) against several proteins. The studies were performed using fluorescently labeled polyA, polyC, and polyT with 23, 18, 12, and 7 nucleotide-long sequences. The results suggest that the ssDNAs with polyC and longer sequences are more resistant to desorption, compared to their counterparts. In addition, 2D-NAs assembled using WS2 were least susceptible to desorption by the proteins tested, whereas nGO 2D-NAs were the most susceptible nanoassemblies. Later, the results of these systematic studies were used to construct a sensor array for discrimination of seven model proteins (BSA, lipase, alkaline phosphatase, acid phosphatase, protease, ß-galactosidase, and Cytochrome c). Neither the ssDNAs nor the 2D-nps have any specific interaction with the proteins tested. Only the displacement of the ssDNAs from the 2D-np surface was measured upon the disruption of the existing forces within 2D-NAs. A customized sensor array with five 2D-NAs was developed as a result of a careful screening/filtering process. The sensor array was tested against 200 nM of protein targets, and each protein was discriminated successfully. The results suggest that the systematic studies performed using various ssDNAs and 2D-nps enabled the construction of a sensor array without a bind-and-release sensing mechanism. The studies also demonstrate the significance of systematic investigations in the construction of two-dimensional DNA nanoassemblies for functional studies.


Asunto(s)
Técnicas Biosensibles/métodos , Citocromos c/análisis , ADN de Cadena Simple/química , Hidrolasas/análisis , Nanopartículas del Metal/química , Albúmina Sérica Bovina/análisis , Adsorción , Animales , Bovinos , Sondas de ADN/química , Análisis Discriminante , Disulfuros/química , Fluorescencia , Fluorometría/métodos , Grafito/química , Molibdeno/química , Conformación de Ácido Nucleico , Poli A/química , Poli C/química , Poli T/química , Compuestos de Tungsteno/química
8.
Anal Chem ; 88(1): 600-5, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26654642

RESUMEN

In this study, we have investigated the intrinsic peroxidase-like activity of citrate-capped AuNPs (perAuxidase) and demonstrated that the nanozyme function can be multiplexed and tuned by integrating oligonucleotides on a nanoparticle surface. Systematic studies revealed that by controlling the reaction parameters, the mutiplexing effect can be delayed or advanced and further used for aptasensor applications.


Asunto(s)
ADN/metabolismo , Oro/metabolismo , Peróxido de Hidrógeno/metabolismo , Nanopartículas del Metal/química , Peroxidasa/metabolismo , Bencidinas/química , Bencidinas/metabolismo , ADN/química , Oro/química , Peróxido de Hidrógeno/química , Peroxidasa/química , Propiedades de Superficie
9.
Langmuir ; 32(24): 6028-34, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27219463

RESUMEN

In just over a decade since its discovery, research on graphene has exploded due to a number of potential applications in electronics, materials, and medicine. In its water-soluble form of graphene oxide, the material has shown promise as a biosensor due to its preferential absorption of single-stranded polynucleotides and fluorescence quenching properties. The rational design of these biosensors, however, requires an improved understanding of the binding thermodynamics and ultimately a predictive model of sequence-specific binding. Toward these goals, here we directly measured the binding of nucleosides and oligonucleotides to graphene oxide nanoparticles using isothermal titration calorimetry and used the results to develop molecular models of graphene-nucleic acid interactions. We found individual nucleosides binding KD values lie in the submillimolar range with binding order of rG < rA < rC < dT < rU, while 5mer and 15mer oligonucleotides had markedly higher binding affinities in the range of micromolar and submicromolar KD values, respectively. The molecular models developed here are calibrated to quantitatively reproduce the above-mentioned experimental results. For oligonucleotides, our model predicts complex binding features such as double-stacked bases and a decrease in the fraction of graphene stacked bases with increasing oligonucleotide length until plateauing beyond ∼10-15 nucleotides. These experimental and computational results set the platform for informed design of graphene-based biosensors, further increasing their potential and application.

10.
Bioconjug Chem ; 26(4): 735-45, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25734834

RESUMEN

Here we have demonstrated that graphene serves as a remarkable platform for monitoring the multitask activity of an enzyme with fluorescence spectroscopy. Our studies showed that four different simultaneous enzymatic tasks of DNase I can be observed and measured in a high throughput fashion using graphene oxide and oligonucleotide nanoassemblies. We have used phosphorothioate modified oligonucleotides to pinpoint the individual and highly specific functions of DNase I with single stranded DNA, RNA, and DNA/DNA and DNA/RNA duplexes. DNase I resulted in fluorescence recovery in the nanoassemblies and enhanced the intensity tremendously in the presence of sequence specific DNA or RNA molecules with different degrees of amplification. Our study enabled us to discover the sources of this remarkable signal enhancement, which has been used for biomedical applications of graphene for sensitive detection of specific oncogenes. The significant difference in the signal amplification observed for the detection of DNA and RNA molecules is a result of the positive and/or reductive signal generating events with the enzyme. In the presence of DNA there are four possible ways that the fluorescence reading is influenced, with two of them resulting in a gain in signal while the other two result in a loss. Since the observed signal is a summation of all the events together, the absence of the two fluorescence reduction events with RNA gives a greater degree of fluorescence signal enhancement when compared to target DNA molecules. Overall, our study demonstrates that graphene has powerful features for determining the enzymatic functions of a protein and reveals some of the unknowns observed in the graphene and oligonucleotide assemblies with DNase I.


Asunto(s)
ADN de Cadena Simple/química , Desoxirribonucleasa I/análisis , Grafito/química , Nanoestructuras/química , Oligonucleótidos Fosforotioatos/química , ARN/química , Técnicas Biosensibles , Desoxirribonucleasa I/química , Nanotecnología/instrumentación , Nanotecnología/métodos , Óxidos , Proteínas Recombinantes/análisis , Proteínas Recombinantes/química , Espectrometría de Fluorescencia
11.
Langmuir ; 31(36): 9943-52, 2015 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-26305398

RESUMEN

In this study we have reported our efforts to address some of the challenges in the detection of miRNAs using water-soluble graphene oxide and DNA nanoassemblies. Purposefully inserting mismatches at specific positions in our DNA (probe) strands shows increasing specificity against our target miRNA, miR-10b, over miR-10a which varies by only a single nucleotide. This increased specificity came at a loss of signal intensity within the system, but we demonstrated that this could be addressed with the use of DNase I, an endonuclease capable of cleaving the DNA strands of the RNA/DNA heteroduplex and recycling the RNA target to hybridize to another probe strand. As we previously demonstrated, this enzymatic signal also comes with an inherent activity of the enzyme on the surface-adsorbed probe strands. To remove this activity of DNase I and the steady nonspecific increase in the fluorescence signal without compromising the recovered signal, we attached a thermoresponsive PEGMA polymer (poly(ethylene glycol) methyl ether methacrylate) to nGO. This smart polymer is able to shield the probes adsorbed on the nGO surface from the DNase I activity and is capable of tuning the detection capacity of the nGO nanoassembly with a thermoswitch at 39 °C. By utilizing probes with multiple mismatches, DNase I cleavage of the DNA probe strands, and the attachment of PEGMA polymers to graphene oxide to block undesired DNase I activity, we were able to detect miR-10b from liquid biopsy mimics and breast cancer cell lines. Overall we have reported our efforts to improve the specificity, increase the sensitivity, and eliminate the undesired enzymatic activity of DNase I on surface-adsorbed probes for miR-10b detection using water-soluble graphene nanodevices. Even though we have demonstrated only the discrimination of miR-10b from miR-10a, our approach can be extended to other short RNA molecules which differ by a single nucleotide.


Asunto(s)
Grafito/química , MicroARNs/genética , Nanotecnología , Oligonucleótidos/química , Polimorfismo de Nucleótido Simple , Espectrometría de Fluorescencia
12.
Int J Cancer ; 134(7): 1758-66, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24114765

RESUMEN

The clinical management of cancer reflects a balance between treatment efficacy and toxicity. While typically, combination therapy improves response rate and time to progression compared with sequential monotherapy, it causes increased toxicity. Consequently, in cases of advanced cancer, emerging guidelines recommend sequential monotherapy, as a means to enhance quality of life. An alternative approach that could overcome nonspecific toxicity while retaining therapeutic efficacy, involves the combination of chemotherapy with targeted therapy. In the current study, we tested the hypothesis that combination therapy targeting survivin (BIRC5) and low-dose doxorubicin (Dox) will show enhanced therapeutic potential in the treatment of cancer, as compared to monotherapy with Dox. We demonstrate in both in vitro and in vivo models of breast cancer that combination therapy with a low dose of Dox and an anti-survivin siRNA nanodrug (MN-siBIRC5) is superior to mono-therapy with either low- or high-dose Dox alone. Importantly, therapeutic efficacy showed prominent sequence dependence. Induction of apoptosis was observed only when the cells were treated with Dox followed by MN-siBIRC5, whereas the reverse sequence abrogated the benefit of the drug combination. In vivo, confirmation of successful sequence dependent combination therapy was demonstrated in a murine xenograft model of breast cancer. Finally, to determine if the observed effect is not limited to breast cancer, we extended our studies to a murine xenograft model of pancreatic adenocarcinoma and found similar outcomes as shown for breast cancer.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Doxorrubicina/farmacología , Proteínas Inhibidoras de la Apoptosis/genética , Nanopartículas/administración & dosificación , ARN Interferente Pequeño/genética , Adenocarcinoma/genética , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Terapia Combinada/métodos , Femenino , Humanos , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Survivin
13.
Analyst ; 139(4): 714-20, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24362750

RESUMEN

Graphene oxide has gained significant attention due to its exceptional physical properties at biological interfaces. It has extraordinary quenching, fast adsorption and desorption properties that are suitable for detection of molecular interactions in nucleic acids. Here we studied the interaction between locked nucleic acid (LNA) modified oligonucleotides and its complementary miR-10b DNA analog. We demonstrate that LNA modification does not alter the hybridization yield, despite a slight difference in the rate, however it does increase the duplex stability dramatically. The noncovalent nucleic acid-graphene oxide complex maintained the stability between 25 and 90 °C in the absence of oligonucleotide-induced desorption. The melting temperatures of duplexes with or without LNA base modification were determined due to remarkable fluorescence quenching and fast oligonucleotide adsorption with graphene oxide. The difference in melting temperatures was used to control the release of surface adsorbed nucleic acids at 70 °C. Finally, a mutation in the oligonucleotide sequence is detected by the complementary oligonucleotides on the graphene oxide surface. Due to its extraordinary physical properties, graphene oxide represents a remarkable platform for studying nucleic acid interactions and serves as a promising material for biomedical applications.


Asunto(s)
Grafito/química , MicroARNs/química , Nanotecnología/métodos , Hibridación de Ácido Nucleico , Oligonucleótidos/química , Técnicas Biosensibles/métodos , Variación Genética , Mutación , Desnaturalización de Ácido Nucleico , Espectrometría de Fluorescencia , Temperatura de Transición
14.
Adv Healthc Mater ; : e2400508, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683016

RESUMEN

Salmonella, the most prevalent food-borne pathogen, poses significant medical and economic threats. Swift and accurate on-site identification and serotyping of Salmonella is crucial to curb its spread and contamination. Here, a synthetic biology cascade reaction is presented on a paper substrate using CRISPR-Cas12a and recombinase polymerase amplification (RPA), enabling the programming of a standard toehold RNA switch for a genome of choice. This approach employs just one toehold RNA switch design to differentiate between two different Salmonella serotypes, i.e., S. Typhimurium and S. Enteritidis, without the need for reengineering the toehold RNA switch. The sensor exhibits high sensitivity, capable of visually detecting as few as 100 copies of the whole genome from a model Salmonella pathogen on a paper substrate. Furthermore, this robust assay is successfully applied to detect whole genomes in contaminated milk and lettuce samples, demonstrating its potential in real sample analysis. Due to its versatility and practical features, genomes from different organisms can be detected by merely changing a single RNA element in this universal cell-free cascade reaction.

15.
J Hazard Mater ; 471: 134390, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38678712

RESUMEN

The extensive use of per- and polyfluoroalkyl substances (PFAS) in many industrial and consumer contexts, along with their persistent nature and possible health hazards, has led to their recognition as a prevalent environmental issue. While various PFAS removal methods exist, adsorption remains a promising, cost-effective approach. This study evaluated the PFAS adsorption performance of a surfactant-modified clay by comparing it with commercial clay-based adsorbents. Furthermore, the impact of environmental factors, including pH, ionic strength, and natural organic matter, on PFAS adsorption by the modified clay (MC) was evaluated. After proving that the MC was regenerable and reusable, magnetic modified clay (MMC) was synthesized, characterized, and tested for removing a wide range of PFAS in pure water and snowmelt. The MMC was found to have similar adsorption performance as the MC and was able to remove > 90% of the PFAS spiked to the snowmelt. The superior and much better performance of the MMC than powdered activated carbon points to its potential use in removing PFAS from real water matrices at an industrial scale.

16.
Pharm Res ; 29(5): 1180-8, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22274558

RESUMEN

Nanotechnology is evolving as a new field that has a potentially high research and clinical impact. Medicine, in particular, could benefit from nanotechnology, due to emerging applications for noninvasive imaging and therapy. One important nanotechnological platform that has shown promise includes the so-called iron oxide nanoparticles. With specific relevance to cancer therapy, iron oxide nanoparticle-based therapy represents an important alternative to conventional chemotherapy, radiation, or surgery. Iron oxide nanoparticles are usually composed of three main components: an iron core, a polymer coating, and functional moieties. The biodegradable iron core can be designed to be superparamagnetic. This is particularly important, if the nanoparticles are to be used as a contrast agent for noninvasive magnetic resonance imaging (MRI). Surrounding the iron core is generally a polymer coating, which not only serves as a protective layer but also is a very important component for transforming nanoparticles into biomedical nanotools for in vivo applications. Finally, different moieties attached to the coating serve as targeting macromolecules, therapeutics payloads, or additional imaging tags. Despite the development of several nanoparticles for biomedical applications, we believe that iron oxide nanoparticles are still the most promising platform that can transform nanotechnology into a conventional medical discipline.


Asunto(s)
Magnetismo , Nanopartículas del Metal , Neoplasias/diagnóstico , Neoplasias/terapia , Humanos , Hierro/química , Nanopartículas del Metal/química
17.
Nanoscale ; 14(37): 13500-13504, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36102688

RESUMEN

We have developed a 'recombinase amplified CRISPR enhanced chain reaction' (RACECAR) assay that can detect as little as 40 copies of hepatitis B virus (HBV) genome using a benchtop spectrofluorometer. The limit of detection was determined to be 3 copies of HBV genome. The specificity of RACECAR was confirmed against hepatitis A virus (HAV). This assay can detect the genomic targets directly in serum samples without an extraction step. The 4 h-long fluorometric assay was developed by combining three tiers of isothermal amplification processes and can be repurposed for any target of choice. This highly modular reaction setup is an untapped resource that can be incorporated into the front-runners of molecular diagnostics.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Recombinasas , ADN Viral/genética , Genoma Viral , Virus de la Hepatitis B/genética , Técnicas de Amplificación de Ácido Nucleico , Recombinasas/genética , Sensibilidad y Especificidad
18.
ACS Synth Biol ; 10(7): 1785-1791, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34142793

RESUMEN

CRISPR-Cas12a is a powerful platform for DNA-based diagnostics. The detection scheme relies on unselective shredding of a fluorescent ssDNA reporter upon target DNA recognition. To extend the reporter library beyond ssDNAs, we discovered a fluorescent reporter type using a dsDNA template. In this design, the fluorescence of the dsDNA reporter is quenched via contact-quenching mechanism. Upon detection, the quenched fluorescence recovers with the activation Cas12a complex. Here, we compared the probing performance of two dsDNA reporters with two ssDNA reporters. The rate of the Cas12a trans-cleavage reaction was studied using one of the dsDNA reporters under different settings. The detection of different sizes of dsDNA or ssDNA targets was studied systematically under three different temperatures. Lower thresholds for ssDNA and dsDNA target size were identified. The mismatch tolerance and target specificity were examined for both ssDNA and dsDNA targets, separately. The probing performance of the dsDNA reporter was evaluated in a random DNA pool with and without target strands. We report that dsDNA can serve as a tunable fluorescence reporter template expanding the toolbox for Cas12a-based diagnostics.


Asunto(s)
Sistemas CRISPR-Cas , ADN/genética , Genes Reporteros , ADN de Cadena Simple/genética
19.
ChemMedChem ; 15(11): 988-994, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32216081

RESUMEN

Monitoring the release and activation of prodrug formulations provides essential information about the outcome of a therapy. While the prodrug delivery can be confirmed by using different imaging techniques, confirming the release of active payload by using imaging is a challenge. Here, we have discovered that the switchable fluorescence of doxorubicin can validate drug release upon its uncaging reaction with a highly specific chemical partner. We have observed that the conjugation of doxorubicin with a trans-cyclooctene (TCO) diminishes its fluorescence at 595 nm. This quenched fluorescence of the doxorubicin prodrug is recovered upon its bond-cleaving reaction with tetrazine. Clinically assessed iron oxide nanoparticles were used to formulate a doxorubicin nanodrug. The release of doxorubicin from the nanodrug was studied under various experimental conditions. A fivefold increase in doxorubicin fluorescence is observed after complete release. The studies were carried out in vitro in MDA-MB-231 breast cancer cells. An increase in Dox signal was observed upon tetrazine administration. This switchable fluorescence mechanism of Dox could be employed for fundamental studies, that is, the reactivity of various tetrazine and TCO linker types under different experimental conditions. In addition, the system could be instrumental for translational research where the release and activation of doxorubicin prodrug payloads can be monitored by using optical imaging systems.


Asunto(s)
Antibióticos Antineoplásicos/química , Doxorrubicina/química , Fluorescencia , Ciclooctanos/química , Relación Dosis-Respuesta a Droga , Portadores de Fármacos/química , Liberación de Fármacos , Femenino , Humanos , Estructura Molecular , Imagen Óptica , Relación Estructura-Actividad , Células Tumorales Cultivadas
20.
Chem Commun (Camb) ; 56(53): 7313-7316, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32478344

RESUMEN

Hydrogels are networks of polymers that can be used for packaging different payload types. They are proven to be versatile materials for various biomedical applications. Implanted hydrogels with encapsulated drugs have been shown to release the therapeutic payloads at disease sites. Hydrogels are usually made through chemical polymerization reactions. Whereas, DNA is a naturally occurring biopolymer which can assemble into highly ordered structures through noncovalent interactions. Here, we have employed a small molecule, cyanuric acid (CA), to assemble polyA-tailed DNA motif into a hydrogel. Encapsulation of a small molecule chemotherapeutic drug, a fluorescent molecule, two proteins and several nanoparticle formulations has been studied. Release of doxorubicin, small fluorescent molecule and fluorescently-labeled antibodies has been demonstrated.


Asunto(s)
Reactivos de Enlaces Cruzados/química , ADN/química , Portadores de Fármacos/química , Hidrogeles/química , Poli A/química , Triazinas/química , Anticuerpos/química , Doxorrubicina/química , Composición de Medicamentos , Liberación de Fármacos , Colorantes Fluorescentes/química , Conformación Molecular , Nanopartículas/química , Polimerizacion
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA