Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nat Methods ; 20(2): 276-283, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36646897

RESUMEN

Cryo-electron tomography (cryo-ET) has become a powerful approach to study the high-resolution structure of cellular macromolecular machines in situ. However, the current correlative cryo-fluorescence and electron microscopy lacks sufficient accuracy and efficiency to precisely prepare cryo-lamellae of target locations for subsequent cryo-ET. Here we describe a precise cryogenic fabrication system, ELI-TriScope, which sets electron (E), light (L) and ion (I) beams at the same focal point to achieve accurate and efficient preparation of a target cryo-lamella. ELI-TriScope uses a commercial dual-beam scanning electron microscope modified to incorporate a cryo-holder-based transfer system and embed an optical imaging system just underneath the vitrified specimen. Cryo-focused ion beam milling can be accurately navigated by monitoring the real-time fluorescence signal of the target molecule. Using ELI-TriScope, we prepared a batch of cryo-lamellae of HeLa cells targeting the centrosome with a success rate of ~91% and discovered new in situ structural features of the human centrosome by cryo-ET.


Asunto(s)
Tomografía con Microscopio Electrónico , Electrones , Humanos , Tomografía con Microscopio Electrónico/métodos , Microscopía por Crioelectrón/métodos , Células HeLa , Sustancias Macromoleculares
2.
Anal Biochem ; 684: 115360, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37865269

RESUMEN

CONTEXT: Echinacoside (ECH) is a natural anti-cancer compound and is of great value in cancer treatment. However, the mechanism underlying this effect on breast cancer (BC) was unclear. OBJECTIVE: To explore the mechanism of ECH treating BC by network pharmacology and experimental validation. MATERIALS & METHODS: Several databases were searched to screen potential targets of ECH and obtain information on targets related to BC. STRING was applied to construct a Protein-protein interaction (PPI) network. DAVID was applied for Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Gene Expression Profiling Interactive Analysis (GEPIA) was searched for the relationship between the expression profile and overall survival of major targets in normal breast and BC tissues. Finally, the results of network pharmacology analysis were validated by experiments. RESULTS: Seventeen targets of ECH overlapped with targets in BC. Ten hub targets were determined through PPI. By GO and KEGG analysis 15 entries and 25 pathways were obtained, in which phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), hypoxia inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF) played greater roles. Validation of key targets in the GEPIA database showed that PIK3R1 and PIK3CD remained consistent with the results of the study. Experiments in vitro showed ECH inhibited proliferation, induced apoptosis and reduced mRNA levels and protein expression of PI3K, AKT, hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor A (VEGFA) in MCF-7 cells. Furthermore, experiments in vivo revealed that ECH significantly reduced tumor growth, promoted apoptosis and decreased the related mRNA levels and protein expression, suggesting ECH works on BC by regulating PI3K/AKT/HIF-1α/VEGF signaling pathway. DISCUSSION & CONCLUSION: In summary, ECH played an important role in anti-BC by regulating PI3K/AKT/HIF-1α/VEGF signaling pathway. Furthermore, ECH had multi-target and multi-pathway effects, which may be a promising natural compound for treating BC.


Asunto(s)
Neoplasias de la Mama , Proteínas Proto-Oncogénicas c-akt , Femenino , Humanos , Neoplasias de la Mama/metabolismo , Proliferación Celular , Hipoxia , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular
3.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34782481

RESUMEN

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mediates membrane fusion to allow entry of the viral genome into host cells. To understand its detailed entry mechanism and develop a specific entry inhibitor, in situ structural information on the SARS-CoV-2 spike protein in different states is urgent. Here, by using cryo-electron tomography, we observed both prefusion and postfusion spikes in ß-propiolactone-inactivated SARS-CoV-2 virions and solved the in situ structure of the postfusion spike at nanometer resolution. Compared to previous reports, the six-helix bundle fusion core, the glycosylation sites, and the location of the transmembrane domain were clearly resolved. We observed oligomerization patterns of the spikes on the viral membrane, likely suggesting a mechanism of fusion pore formation.


Asunto(s)
SARS-CoV-2/ultraestructura , Glicoproteína de la Espiga del Coronavirus/química , Secuencias de Aminoácidos , Animales , Chlorocebus aethiops , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Glicosilación , Dominios Proteicos , Multimerización de Proteína , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero
4.
Phytother Res ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886838

RESUMEN

Due to a scarcity of appropriate therapeutic approaches capable of ameliorating or eliminating non-alcoholic fatty liver disease (NAFLD), many researchers have come to focus on natural products based on traditional medicine that can be utilized to successfully treat NAFLD. In this study, we aimed to evaluate the effects exerted by seven natural products (curcumin, silymarin, resveratrol, artichoke leaf extract, berberine, catechins, and naringenin) on patients with NAFLD. For this purpose, PubMed, Embase, Cochrane Library, and Web of Science, were searched for randomized controlled trials (RCTs) exclusively. The selected studies were evaluated for methodological quality via the Cochrane bias risk assessment tool, and data analysis software was used to analyze the data accordingly. The RCTs from the earliest available date until September 2022 were collected. This process resulted in 37 RCTs with a total sample size of 2509 patients being included. The results of the network meta-analysis showed that artichoke leaf extract confers a relative advantage in reducing the aspartate aminotransferase (AST) levels (SUCRA: 99.1%), alanine aminotransferase (ALT) levels (SUCRA: 88.2%) and low-density lipoprotein cholesterol (LDL-C) levels (SUCRA: 88.9%). Naringenin conferred an advantage in reducing triglyceride (TG) levels (SUCRA: 97.3%), total cholesterol (TC) levels (SUCRA: 73.9%), and improving high-density lipoprotein cholesterol (HDL-C) levels (SUCRA: 74.9%). High-density catechins significantly reduced body mass index (BMI) levels (SUCRA: 98.5%) compared with the placebo. The Ranking Plot of the Network indicated that artichoke leaf extract and naringenin performed better than the other natural products in facilitating patient recovery. Therefore, we propose that artichoke leaf extract and naringenin may exert a better therapeutic effect on NAFLD. This study may help guide clinicians and lead to further detailed studies.

5.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1760-1769, 2023 Apr.
Artículo en Zh | MEDLINE | ID: mdl-37282950

RESUMEN

The present study aimed to investigate the effect of diosgenin on mammalian target of rapamycin(mTOR), fatty acid synthase(FASN), hypoxia inducible factor-1α(HIF-1α), and vascular endothelial growth factor A(VEGFA) expression in liver tissues of rats with non-alcoholic fatty liver disease(NAFLD) and explore the mechanism of diosgenin on lipogenesis and inflammation in NAFLD. Forty male SD rats were divided into a normal group(n=8) fed on the normal diet and an experimental group(n=32) fed on the high-fat diet(HFD) for the induction of the NAFLD model. After modeling, the rats in the experimental group were randomly divided into an HFD group, a low-dose diosgenin group(150 mg·kg~(-1)·d~(-1)), a high-dose diosgenin group(300 mg·kg~(-1)·d~(-1)), and a simvastatin group(4 mg·kg~(-1)·d~(-1)), with eight rats in each group. The drugs were continuously given by gavage for eight weeks. The levels of triglyceride(TG), total cholesterol(TC), low-density lipoprotein cholesterol(LDL-C), alanine transaminase(ALT), and aspartate transaminase(AST) in the serum were detected by the biochemical method. The content of TG and TC in the liver was detected by the enzyme method. Enzyme-linked immunosorbent assay(ELISA) was used to measure interleukin 1ß(IL-1ß) and tumor necrosis factor α(TNF-α) in the serum. Lipid accumulation in the liver was detected by oil red O staining. Pathological changes of liver tissues were detected by hematoxylin-eosin(HE) staining. The mRNA and protein expression levels of mTOR, FASN, HIF-1α, and VEGFA in the liver of rats were detected by real-time fluorescence-based quantitative polymerase chain reaction(PCR) and Western blot, respectively. Compared with the normal group, the HFD group showed elevated body weight and levels of TG, TC, LDL-C, ALT, AST, IL-1ß, and TNF-α(P<0.01), increased lipid accumulation in the liver(P<0.01), obvious liver steatosis, up-regulated mRNA expression levels of mTOR, FASN, HIF-1α, and VEGFA(P<0.01), and increased protein expression levels of p-mTOR, FASN, HIF-1α, and VEGFA(P<0.01). Compared with the HFD group, the groups with drug treatment showed lowered body weight and levels of TG, TC, LDL-C, ALT, AST, IL-1ß, and TNF-α(P<0.05, P<0.01), reduced lipid accumulation in the liver(P<0.01), improved liver steatosis, decreased mRNA expression levels of mTOR, FASN, HIF-1α, and VEGFA(P<0.05, P<0.01), and declining protein expression levels of p-mTOR, FASN, HIF-1α, and VEGFA(P<0.01). The therapeutic effect of the high-dose diosgenin group was superior to that of the low-dose diosgenin group and the simvastatin group. Diosgenin may reduce liver lipid synthesis and inflammation and potentiate by down-regulating the mTOR, FASN, HIF-1α, and VEGFA expression, playing an active role in preventing and treating NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratas , Masculino , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , LDL-Colesterol , Ratas Sprague-Dawley , Hígado , Inflamación/metabolismo , Dieta Alta en Grasa/efectos adversos , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , ARN Mensajero/metabolismo , Peso Corporal , Mamíferos
6.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5304-5314, 2023 Oct.
Artículo en Zh | MEDLINE | ID: mdl-38114120

RESUMEN

This study aims to observe the effects of diosgenin on the expression of mammalian target of rapamycin(mTOR), sterol regulatory element-binding protein-1c(SREBP-1c), heat shock protein 60(HSP60), medium-chain acyl-CoA dehydrogenase(MCAD), and short-chain acyl-CoA dehydrogenase(SCAD) in the liver tissue of the rat model of non-alcoholic fatty liver disease(NAFLD) and explore the mechanism of diosgenin in alleviating NAFLD. Forty male SD rats were randomized into five groups: a control group, a model group, low-(150 mg·kg~(-1)·d~(-1)) and high-dose(300 mg·kg~(-1)·d~(-1)) diosgenin groups, and a simvastatin(4 mg·kg~(-1)·d~(-1)) group. The rats in the control group were fed with a normal diet, while those in the other four groups were fed with a high-fat diet. After feeding for 8 weeks, the body weight of rats in the high-fat diet groups increased significantly. After that, the rats were administrated with the corresponding dose of diosgenin or simvastatin by gavage every day for 8 weeks. The levels of triglyceride(TG), total cholesterol(TC), alanine transaminase(ALT), and aspartate transaminase(AST) in the serum were determined by the biochemical method. The levels of TG and TC in the liver were measured by the enzyme method. Oil-red O staining was employed to detect the lipid accumulation, and hematoxylin-eosin(HE) staining to detect the pathological changes in the liver tissue. The mRNA and protein levels of mTOR, SREBP-1c, HSP60, MCAD, and SCAD in the liver tissue of rats were determined by real-time fluorescence quantitative polymerase chain reaction(RT-qPCR) and Western blot, respectively. Compared with the control group, the model group showed increased body weight, food uptake, liver index, TG, TC, ALT, and AST levels in the serum, TG and TC levels in the liver, lipid deposition in the liver, obvious hepatic steatosis, up-regulated mRNA and protein expression levels of mTOR and SREBP-1c, and down-regulated mRNA and protein expression levels of HSP60, MCAD, and SCAD. Compared with the model group, the rats in each treatment group showed obviously decreased body weight, food uptake, liver index, TG, TC, ALT, and AST levels in the serum, TG and TC levels in the liver, lessened lipid deposition in the liver, ameliorated hepatic steatosis, down-regulated mRNA and protein le-vels of mTOR and SREBP-1c, and up-regulated mRNA and protein levels of HSP60, MCAD, and SCAD. The high-dose diosgenin outperformed the low-dose diosgenin and simvastatin. Diosgenin may prevent and treat NAFLD by inhibiting the expression of mTOR and SREBP-1c and promoting the expression of HSP60, MCAD, and SCAD to reduce lipid synthesis, improving mitochondrial function, and promoting fatty acid ß oxidation in the liver.


Asunto(s)
Diosgenina , Enfermedad del Hígado Graso no Alcohólico , Ratas , Masculino , Animales , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Dieta Alta en Grasa/efectos adversos , Diosgenina/metabolismo , Chaperonina 60/metabolismo , Chaperonina 60/farmacología , Chaperonina 60/uso terapéutico , Ratas Sprague-Dawley , Hígado , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Triglicéridos , ARN Mensajero/metabolismo , Simvastatina/metabolismo , Simvastatina/farmacología , Simvastatina/uso terapéutico , Peso Corporal , Metabolismo de los Lípidos , Mamíferos/genética , Mamíferos/metabolismo
7.
Drug Dev Res ; 83(8): 1725-1738, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36126194

RESUMEN

Diosgenin, a steroidal saponin, is a natural product found in many plants. Diosgenin has a wide range of pharmacological activities, and has been used to treat cancer, nervous system diseases, inflammation, and infections. Numerous studies have shown that diosgenin has potential therapeutic value for lipid metabolism diseases via various pathways and mechanisms, such as controlling lipid synthesis, absorption, and inhibition of oxidative stress. These mechanisms and pathways have provided ideas for researchers to develop related drugs. In this review, we focus on data from animal and clinical studies, summarizing the toxicity of diosgenin, its pharmacological mechanism, recent research advances, and the related mechanisms of diosgenin as a drug for the treatment of lipid metabolism, especially in obesity, hyperlipidemia, nonalcoholic fatty liver disease, atherosclerosis, and diabetes. This systematic review will briefly describe the advantages of diosgenin as a potential therapeutic drug and seek to enhance our understanding of the pharmacological mechanism, recipe-construction, and the development of novel therapeutics against lipid metabolism diseases.


Asunto(s)
Diosgenina , Animales , Diosgenina/farmacología , Diosgenina/uso terapéutico , Metabolismo de los Lípidos , Estrés Oxidativo , Antioxidantes/farmacología , Inflamación/tratamiento farmacológico
9.
Brain Res ; 1827: 148743, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38159592

RESUMEN

By safeguarding the neurological system, insulin-like growth factor 1 (IGF-1) may have a role in the etiology of Alzheimer's disease (AD). The mechanism and signaling route, however, remain unclear. This research aimed to investigate the impact of IGF-1 on AD as well as its possible mechanism and signaling route. In this work, intracerebroventricular AAV9-IGF-1 was delivered to APP/PS1 transgenic mice. Following therapy, the Morris water maze and passive avoidance tests were administered to evaluate spatial learning and memory. The elevated plus maze, the open field test, and the sucrose preference test were used to evaluate anxious-depressive-like behavior. Thioflavin S staining was employed to visualize Aß deposition, and ELISA was used to determine the quantities of soluble Aß1-40 and Aß1-42. Transmission electron microscopy was used to view the mitochondrial structure and mitophagy vesicles. The protein expression levels of PINK1, Parkin, and LC3-II/LC3-I were finally determined by Western blotting. AAV9-IGF-1 therapy enhanced spatial learning and memory, relieved anxious-depressive-like behavior impairments, lowered amyloid-ß deposition, and decreased levels of soluble Aß1-40 and Aß1-42. In addition, AAV9-IGF-1 therapy restored mitochondrial integrity and increased the number of mitophagy in transgenic mice expressing APP/PS1. These results indicate that IGF-1 is protective for APP/PS1 mice. The mechanism of the favorable benefits mediated by IGF-1 was connected to an increase in mitophagy, which might give a novel therapy target in the future.


Asunto(s)
Enfermedad de Alzheimer , Mitofagia , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones Transgénicos , Regulación hacia Arriba , Modelos Animales de Enfermedad
10.
Int Immunopharmacol ; 138: 112581, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38944952

RESUMEN

Metabolic-associated fatty liver disease (MAFLD) is one of the most common liver diseases worldwide; however, its pathogenesis and treatment methods have not been perfected. NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) is a promising therapeutic target for MAFLD. Diosgenin (DG) is a natural compound that was identified in a traditional Chinese herbal medicine, which has pharmacological effects, such as anti-inflammatory, antioxidant, hepatoprotective, and hypolipidemic activities. In this study, we examined the effects and molecular mechanisms of DG on MAFLD in vitro and in vivo. We established a rat model by administering a high-fat diet (HFD). We also generated an in vitro MAFLD model by treating HepG2 cells with free fatty acids (FFAs). The results indicated that DG attenuated lipid accumulation and liver injury in both in vitro and in vivo models. DG downregulated the expression of NLRP3, apoptosis-associated speckle-like protein (ASC), cysteinyl aspartate specific proteinase-1 (caspase-1), gasdermin D (GSDMD), GSDMD-n, and interleukin-1ß (IL-1ß). In addition, we silenced and overexpressed NLRP3 in vitro to determine the effects of DG on antiMAFLD. Silencing NLRP3 enhanced the effect of DG on the treatment of MAFLD, whereas NLRP3 overexpression reversed its beneficial effects. Taken together, the results show that DG has a favorable effect on attenuating MAFLD through the hepatic NLRP3 inflammasome-dependent signaling pathway. DG represents a natural NLRP3 inhibitor for the MAFLD treatment.

11.
Eur J Pharmacol ; 977: 176737, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38866362

RESUMEN

The prevalence of nonalcoholic fatty liver disease (NAFLD) has been increasing worldwide in recent years, causing severe economic and social burdens. Therefore, the lack of currently approved drugs for anti-NAFLD has gradually gained attention. SIRT1, as a member of the sirtuins family, is now the most widely studied in the pathophysiology of many metabolic diseases, and has great potential for preventing and treating NAFLD. Natural products such as Diosgenin (DG) have the potential to be developed as clinical drugs for the treatment of NAFLD due to their excellent multi-target therapeutic effects. In this study, we found that DG can activate the SIRT1/PGC-1α pathway and upregulate the expression of its downstream targets nuclear respiratory factor 1 (NRF1), complex IV (COX IV), mitofusin-2 (MFN2), and PPARα (perox-isome proliferator-activated receptor α) in SD rats induced by high-fat diet (HFD) and HepG2 cells caused by free fatty acids (FFAs, sodium oleate: sodium palmitate = 2:1). Conversely, the levels of dynamin-related protein 1 (DRP1) and inflammatory factors, including NF-κB p65, IL6, and TNFα, were downregulated both in vitro and in vivo. This improved mitochondrial dysfunction, fatty acid oxidation (FAO), lipid accumulation, steatosis, oxidative stress, and hepatocyte inflammation. Subsequently, we applied SIRT1 inhibitor EX527 and SIRT1 agonist SRT1720 to confirm further the necessity of activating SIRT1 for DG to exert therapeutic effects on NAFLD. In summary, these results further demonstrate the potential therapeutic role of DG as a SIRT1 natural agonist for NAFLD. (Graphical Abstracts).


Asunto(s)
Diosgenina , Hígado , Enfermedad del Hígado Graso no Alcohólico , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Ratas Sprague-Dawley , Transducción de Señal , Sirtuina 1 , Sirtuina 1/metabolismo , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Humanos , Masculino , Ratas , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Células Hep G2 , Transducción de Señal/efectos de los fármacos , Diosgenina/farmacología , Diosgenina/uso terapéutico , Diosgenina/análogos & derivados , Dieta Alta en Grasa/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos
12.
Int J Biol Macromol ; 261(Pt 1): 129670, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280697

RESUMEN

The oxidative microenvironment in fibrotic livers often diminishes the effectiveness of mesenchymal stem cells (MSCs)-based therapy. Recent research suggests that pharmacological pre-treatment could enhance the therapeutic performance of MSCs. In this study, we assessed the impact of Arctium lappa L. polysaccharides (ALP) on the biological properties of nasal ectomesenchymal stem cells (EMSCs) and investigated the augmenting effect of ALP pretreatment on EMSCs (ALP-EMSCs) for the treatment of liver fibrosis. ALP treatment demonstrated multiple biological impacts on EMSC functions regarding liver fibrosis: firstly, it maintained the stemness of the cells while boosting the EMSCs' paracrine effects; secondly, it increased the expression of anti-inflammatory and antioxidant factors; thirdly, it inhibited the activation of hepatic stellate cells (HSCs) and liver collagen build-up by modulating the Wnt/ß-catenin signaling pathways. Collectively, these effects helped to halt the progression of liver fibrosis. Therefore, the use of ALP-EMSCs presents an innovative and promising approach for treating hepatic fibrosis in clinical scenarios.


Asunto(s)
Arctium , Células Madre Mesenquimatosas , Humanos , beta Catenina/metabolismo , Vía de Señalización Wnt , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo
13.
Heliyon ; 10(3): e25171, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38352746

RESUMEN

Depression is considered to be an "emotional disease" in ancient books of traditional Chinese medicine. Its clinical features are similar to those of "Lily disease" in the ancient Chinese medicine book Synopsis of the Golden Chamber written by Zhang Zhongjing in the Han Dynasty. Baihe Zhimu (Lilium lancifolium bulb and Anemarrhena asphodeloides rhizome) decoction (LBRAD) is the first prescription of "Lily Disease" in this book. It is also a special remedy for "Lily disease" after sweating. The classic recipe LBRAD consists of two herbs, fresh lily bulbs and dried Rhizoma Anemarrhena slice. It has the effect of supplementing nutrition and clearing heat, nourishing Yin and moistening. After more than two thousand years of clinical practice, it has been currently widely used in clinical treatment of depression. In this paper, the relationship between LBRAD and depression was systematically reviewed from both clinical and experimental studies, as well as the preparation, the clinical application, the pharmacological mechanism and the effective material basis for the treating depression of LBRAD. The core targets and biological processes of the depression treatment were explored through network pharmacological analysis, so as to speculate its potential mechanism. Finally, the association between LBRAD and post-COVID-19 depression was discussed. We concluded with a summary and future prospects. This review may provide a theoretical basis for the expansion of the clinical application of LBRAD and the development of new drugs for the treatment of depression, as well as new ideas for the secondary development of classical prescriptions.

14.
J Cardiovasc Pharmacol Ther ; 29: 10742484241248046, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656132

RESUMEN

Atherosclerosis is now widely considered to be a chronic inflammatory disease, with increasing evidence suggesting that lipid alone is not the main factor contributing to its development. Rather, atherosclerotic plaques contain a significant amount of inflammatory cells, characterized by the accumulation of monocytes and lymphocytes on the vessel wall. This suggests that inflammation may play a crucial role in the occurrence and progression of atherosclerosis. As research deepens, other pathological factors have also been found to influence the development of the disease. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway is a recently discovered target of inflammation that has gained attention in recent years. Numerous studies have provided evidence for the causal role of this pathway in atherosclerosis, and its downstream signaling factors play a significant role in this process. This brief review aims to explore the crucial role of the JAK/STAT pathway and its representative downstream signaling factors in the development of atherosclerosis. It provides a new theoretical basis for clinically affecting the development of atherosclerosis by interfering with the JAK/STAT signaling pathway.


Asunto(s)
Aterosclerosis , Quinasas Janus , Factores de Transcripción STAT , Transducción de Señal , Humanos , Aterosclerosis/metabolismo , Aterosclerosis/tratamiento farmacológico , Factores de Transcripción STAT/metabolismo , Quinasas Janus/metabolismo , Animales , Inhibidores de las Cinasas Janus/uso terapéutico , Inhibidores de las Cinasas Janus/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Mediadores de Inflamación/metabolismo
15.
J Mol Biol ; 435(9): 168051, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36933820

RESUMEN

The nuclear pore complex (NPC) is a giant protein assembly that penetrates the double layers of the nuclear membrane. The overall structure of the NPC has approximately eightfold symmetry and is formed by approximately 30 nucleoporins. The great size and complexity of the NPC have hindered the study of its structure for many years until recent breakthroughs were achieved by integrating the latest high-resolution cryo-electron microscopy (cryo-EM), the emerging artificial intelligence-based modeling and all other available structural information from crystallography and mass spectrometry. Here, we review our latest knowledge of the NPC architecture and the history of its structural study from in vitro to in situ with progressively improved resolutions by cryo-EM, with a particular focus on the latest subnanometer-resolution structural studies. The future directions for structural studies of NPCs are also discussed.


Asunto(s)
Inteligencia Artificial , Proteínas de Complejo Poro Nuclear , Poro Nuclear , Microscopía por Crioelectrón/métodos , Membrana Nuclear , Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/química
16.
Cell Discov ; 9(1): 116, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989994

RESUMEN

The propulsion for mammalian sperm swimming is generated by flagella beating. Microtubule doublets (DMTs) along with microtubule inner proteins (MIPs) are essential structural blocks of flagella. However, the intricate molecular architecture of intact sperm DMT remains elusive. Here, by in situ cryo-electron tomography, we solved the in-cell structure of mouse sperm DMT at 4.5-7.5 Å resolutions, and built its model with 36 kinds of MIPs in 48 nm periodicity. We identified multiple copies of Tektin5 that reinforce Tektin bundle, and multiple MIPs with different periodicities that anchor the Tektin bundle to tubulin wall. This architecture contributes to a superior stability of A-tubule than B-tubule of DMT, which was revealed by structural comparison of DMTs from the intact and deformed axonemes. Our work provides an overall molecular picture of intact sperm DMT in 48 nm periodicity that is essential to understand the molecular mechanism of sperm motility as well as the related ciliopathies.

17.
Front Neurol ; 14: 1295051, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38322794

RESUMEN

Objective: Some previous studies have suggested a potential link between stroke and gastroesophageal reflux disease (GERD). We used a two-sample bidirectional Mendelian randomization (MR) method to explore the causal relationship between stroke and GERD. Design: Summary-level data derived from the published genome-wide association studies (GWAS) were employed for analyses. Single-nucleotide polymorphisms (SNPs) as instrumental variables (IVs) for stroke (n = 446,696) and its common subtypes ischemic stroke (IS) (n = 440,328), large vessel stroke (LVS) (n = 410,484), small vessel stroke (SVS) (n = 198,048), and cardioembolic stroke (CES) (n = 413,304) were obtained from the MEGASTROKE consortium. The data on intracerebral hemorrhage (ICH) (n = 721,135) come from the UK Biobank. Instrumental variables (IVs) for lacunar stroke (LS) (n = 474,348) and GERD (n = 602,604) were screened from publicly available genetic summary data. The inverse variance weighted (IVW) method was used as the main MR method. Pleiotropy was detected by the MR-Egger intercept test, MR pleiotropy residual sum and outlier, and leave-one-out analysis. Cochran Q statistics were used as supplements to detect pleiotropy. Results: We found that GERD can causally increase the risk of stroke [IVW odds ratio (OR): 1.22, 95% confidence interval (CI): 1.13-1.32, p = 1.16 × 10-6] and its common subtypes IS (OR: 1.19, 95% CI: 1.10-1.30, p = 3.22 × 10-5), LVS (OR: 1.49, 95% CI: 1.21-1.84, p = 1.47 × 10-4), and LS (OR: 1.20, 95% CI: 1.001-1.44, p = 0.048). Several important risk factors for stroke have also been implicated in the above causal relationship, including type 2 diabetes, sleep apnea syndrome, high body mass index, high waist-to-hip ratio, and elevated serum triglyceride levels. In reverse MR analysis, we found that overall stroke (OR: 1.09, 95% CI: 1.004-1.19, p = 0.039) and IS (OR: 1.10, 95% CI: 1.03-1.17, p = 0.007) have the causal potential to enhance GERD risk. Conclusion: This MR study provides evidence supporting a causal relationship between GERD and stroke and some of its common subtypes. We need to further explore the interconnected mechanisms between these two common diseases to better prevent and treat them.

18.
Eur J Pharmacol ; 952: 175808, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37263401

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide and has no approved treatment. The hepatic farnesoid X receptor (FXR) is one of the most promising therapeutic targets for NAFLD. Diosgenin (DG), a natural compound extracted from Chinese herbal medicine, is very effective in preventing metabolic diseases. Our research aims to determine the effects and molecular mechanisms of DG on NAFLD in vivo and in vitro. The effect of DG on hepatic steatosis was evaluated in Sprague‒Dawley (SD) rats induced by a high-fat diet (HFD) and in HepG2 cells exposed to free fatty acids (FFAs, sodium oleate:sodium palmitate = 2:1). DG treatment efficiently managed hepatic lipid deposition in vivo and in vitro. Mechanistically, DG upregulated the expression of FXR and small heterodimer partner (SHP) and downregulated the expression of genes involved in hepatic de novo lipogenesis (DNL), including sterol regulatory element-binding protein 1C (SREBP1C), acetyl-CoA carboxylase 1 (ACC1), and fatty acid synthase (FASN). Moreover, DG promoted the expression of peroxisome proliferator-activated receptor alpha (PPARα), which is related to fatty acid oxidation. In addition, DG inhibited the expression of the CD36 molecule (CD36) related to fatty acid uptake. However, hepatic FXR silencing weakened the regulatory effects of DG on these genes. Collectively, our data show that DG has a good effect on alleviating nonalcoholic hepatic steatosis via the hepatic FXR-SHP-SREBP1C/PPARα/CD36 pathway. DG promises to be a novel candidate FXR activator that can be utilized to treat NAFLD.


Asunto(s)
Diosgenina , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratas , Ácidos Grasos/metabolismo , Ácidos Grasos no Esterificados/farmacología , Hígado , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Ratas Sprague-Dawley , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Diosgenina/uso terapéutico
19.
Diabetes Metab Syndr Obes ; 16: 4043-4064, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089432

RESUMEN

Non-alcoholic fatty liver disease(NAFLD) is an umbrella term for a range of diseases ranging from hepatic fat accumulation and steatosis to non-alcoholic steatohepatitis (NASH) in the absence of excessive alcohol consumption and other definite liver damage factors. The incidence of NAFLD has increased significantly in recent years and will continue to grow in the coming decades. NAFLD has become a huge health problem and economic burden. SIRT1 is a member of Sirtuins, a group of highly conserved histone deacetylases regulated by NAD+, and plays a vital role in regulating cholesterol and lipid metabolism, improving oxidative stress, inflammation, and insulin resistance through deacetylating some downstream transcription factors and thus improving NAFLD. Although there are no currently approved drugs for treating NAFLD and some unresolved limitations in developing SIRT1 activators, SIRT1 holds promise as a proper therapeutic target for NAFLD and other metabolic diseases. In recent years, natural products have played an increasingly important role in drug development due to their safety and efficacy. It has been discovered that some natural products may be able to prevent and treat NAFLD by targeting SIRT1 and its related pathways. This paper reviews the mechanism of SIRT1 in the improvement of NALFD and the natural products that regulate NAFLD through SIRT1 and its associated pathways, and discusses the potential of SIRT1 as a therapeutic target for treating NAFLD and the effectiveness of these related natural products as clinical drugs or dietary supplements. These works may provide some new ideas and directions for finding new therapeutic targets for NAFLD and the development of anti-NAFLD drugs with good pharmacodynamic properties.

20.
bioRxiv ; 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38187566

RESUMEN

The ADP-Ribosylation Factor (ARF) small GTPases have been found to act in vesicle fission through a direct ability to tubulate membrane. Here, we have used cryo-electron microscopy (EM) to solve the structure of an ARF6 protein lattice assembled on tubulated membrane to 3.9 Å resolution. ARF6 forms tetramers that polymerize into helical arrays to form this lattice. We identify, and confirm functionally, protein contacts critical for this lattice formation. The solved structure also suggests how the ARF amphipathic helix is positioned in the lattice for membrane insertion, and how a GTPase-activating protein (GAP) docks onto the lattice to catalyze ARF-GTP hydrolysis in completing membrane fission. As ARF1 and ARF6 are structurally conserved, we have also modeled ARF1 onto the ARF6 lattice, which has allowed us to pursue the reconstitution of Coat Protein I (COPI) vesicles to confirm more definitively that the ARF lattice acts in vesicle fission. Our findings are notable for having achieved the first detailed glimpse of how a small GTPase bends membrane and having provided a molecular understanding of how an ARF protein acts in vesicle fission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA