Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 604(7907): 749-756, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35444283

RESUMEN

Amplification of the CCNE1 locus on chromosome 19q12 is prevalent in multiple tumour types, particularly in high-grade serous ovarian cancer, uterine tumours and gastro-oesophageal cancers, where high cyclin E levels are associated with genome instability, whole-genome doubling and resistance to cytotoxic and targeted therapies1-4. To uncover therapeutic targets for tumours with CCNE1 amplification, we undertook genome-scale CRISPR-Cas9-based synthetic lethality screens in cellular models of CCNE1 amplification. Here we report that increasing CCNE1 dosage engenders a vulnerability to the inhibition of the PKMYT1 kinase, a negative regulator of CDK1. To inhibit PKMYT1, we developed RP-6306, an orally bioavailable and selective inhibitor that shows single-agent activity and durable tumour regressions when combined with gemcitabine in models of CCNE1 amplification. RP-6306 treatment causes unscheduled activation of CDK1 selectively in CCNE1-overexpressing cells, promoting early mitosis in cells undergoing DNA synthesis. CCNE1 overexpression disrupts CDK1 homeostasis at least in part through an early activation of the MMB-FOXM1 mitotic transcriptional program. We conclude that PKMYT1 inhibition is a promising therapeutic strategy for CCNE1-amplified cancers.


Asunto(s)
Ciclina E , Proteínas de la Membrana , Neoplasias Ováricas , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Proteína Quinasa CDC2 , Ciclina E/genética , Femenino , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de la Membrana/genética , Neoplasias/genética , Neoplasias Ováricas/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Mutaciones Letales Sintéticas
2.
Res Sq ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38410486

RESUMEN

Ovarian cancers (OVCAs) and endometrial cancers (EMCAs) with CCNE1-amplification are often resistant to standard of care treatment and represent an unmet clinical need. Previously, synthetic-lethal screening identified loss of the CDK1 regulator, PKMYT1, as synthetically lethal with CCNE1-amplification. We hypothesized that CCNE1-amplification associated replication stress will be more effectively targeted by combining the PKMYT1 inhibitor, lunresertib (RP-6306), with the ATR inhibitor, camonsertib (RP-3500/RG6526). Low dose combination RP-6306 with RP-3500 synergistically increased cytotoxicity more in CCNE1 amplified compared to non-amplified cells. Combination treatment produced durable antitumor activity and increased survival in CCNE1 amplified patient-derived and cell line-derived xenografts. Mechanistically, low doses of RP-6306 with RP-3500 increase CDK1 activation more so than monotherapy, triggering rapid and robust induction of premature mitosis, DNA damage and apoptosis in a CCNE1-dependent manner. These findings suggest that targeting CDK1 activity by combining RP-6306 with RP-3500 is a novel therapeutic approach to treat CCNE1-amplifed OVCAs and EMCAs.

3.
Mol Cancer Ther ; 23(10): 1494-1510, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38781103

RESUMEN

Endocrine therapies (ET) with cyclin-dependent kinase 4/6 (CDK4/6) inhibition are the standard treatment for estrogen receptor-α-positive (ER+) breast cancer, however drug resistance is common. In this study, proteogenomic analyses of patient-derived xenografts (PDXs) from patients with 22 ER+ breast cancer demonstrated that protein kinase, membrane-associated tyrosine/threonine one (PKMYT1), a WEE1 homolog, is estradiol (E2) regulated in E2-dependent PDXs and constitutively expressed when growth is E2-independent. In clinical samples, high PKMYT1 mRNA levels associated with resistance to both ET and CDK4/6 inhibition. The PKMYT1 inhibitor lunresertib (RP-6306) with gemcitabine selectively and synergistically reduced the viability of ET and palbociclib-resistant ER+ breast cancer cells without functional p53. In vitro the combination increased DNA damage and apoptosis. In palbociclib-resistant, TP53 mutant PDX-derived organoids and PDXs, RP-6306 with low-dose gemcitabine induced greater tumor volume reduction compared to treatment with either single agent. Our study demonstrates the clinical potential of RP-6306 in combination with gemcitabine for ET and CDK4/6 inhibitor resistant TP53 mutant ER+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Resistencia a Antineoplásicos , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Animales , Ratones , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Biomarcadores de Tumor , Piperazinas/farmacología , Piperazinas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Receptores de Estrógenos/metabolismo , Gemcitabina , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Apoptosis/efectos de los fármacos
4.
Mol Cancer Ther ; 21(2): 245-256, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34911817

RESUMEN

Ataxia telangiectasia and Rad3-related (ATR) kinase protects genome integrity during DNA replication. RP-3500 is a novel, orally bioavailable clinical-stage ATR kinase inhibitor (NCT04497116). RP-3500 is highly potent with IC50 values of 1.0 and 0.33 nmol/L in biochemical and cell-based assays, respectively. RP-3500 is highly selective for ATR with 30-fold selectivity over mammalian target of rapamycin (mTOR) and more than 2,000-fold selectivity over ataxia telangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK), and phosphatidylinositol 3-kinase alpha (PI3Kα) kinases. In vivo, RP-3500 treatment results in potent single-agent efficacy and/or tumor regression in multiple xenograft models at minimum effective doses (MED) of 5 to 7 mg/kg once daily. Pharmacodynamic assessments validate target engagement, with dose-proportional tumor inhibition of phosphorylated checkpoint kinase 1 (pCHK1) (IC80 = 18.6 nmol/L) and induction of phosphorylated H2A.X variant histone (γH2AX), phosphorylated DNA-PK catalytic subunit (pDNA-PKcs), and phosphorylated KRAB-associated protein 1 (pKAP1). RP-3500 exposure at MED indicates that circulating free plasma levels above the in vivo tumor IC80 for 10 to 12 hours are sufficient for efficacy on a continuous schedule. However, short-duration intermittent (weekly 3 days on/4 days off) dosing schedules as monotherapy or given concomitantly with reduced doses of olaparib or niraparib, maximize tumor growth inhibition while minimizing the impact on red blood cell depletion, emphasizing the reversible nature of erythroid toxicity with RP-3500 and demonstrating superior efficacy compared with sequential treatment. These results provide a strong preclinical rationale to support ongoing clinical investigation of the novel ATR inhibitor, RP-3500, on an intermittent schedule as a monotherapy and in combination with PARP inhibitors as a potential means of maximizing clinical benefit.


Asunto(s)
Ataxia Telangiectasia , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteína Quinasa Activada por ADN/metabolismo , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
5.
J Med Chem ; 65(15): 10251-10284, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35880755

RESUMEN

PKMYT1 is a regulator of CDK1 phosphorylation and is a compelling therapeutic target for the treatment of certain types of DNA damage response cancers due to its established synthetic lethal relationship with CCNE1 amplification. To date, no selective inhibitors have been reported for this kinase that would allow for investigation of the pharmacological role of PKMYT1. To address this need compound 1 was identified as a weak PKMYT1 inhibitor. Introduction of a dimethylphenol increased potency on PKMYT1. These dimethylphenol analogs were found to exist as atropisomers that could be separated and profiled as single enantiomers. Structure-based drug design enabled optimization of cell-based potency. Parallel optimization of ADME properties led to the identification of potent and selective inhibitors of PKMYT1. RP-6306 inhibits CCNE1-amplified tumor cell growth in several preclinical xenograft models. The first-in-class clinical candidate RP-6306 is currently being evaluated in Phase 1 clinical trials for treatment of various solid tumors.


Asunto(s)
Neoplasias , Proteínas Tirosina Quinasas , Línea Celular Tumoral , Proliferación Celular , Humanos , Proteínas de la Membrana , Neoplasias/patología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas
6.
Nat Cancer ; 2(12): 1357-1371, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-35121901

RESUMEN

BRCA1/2-mutated cancer cells adapt to the genome instability caused by their deficiency in homologous recombination (HR). Identification of these adaptive mechanisms may provide therapeutic strategies to target tumors caused by the loss of these genes. In the present study, we report genome-scale CRISPR-Cas9 synthetic lethality screens in isogenic pairs of BRCA1- and BRCA2-deficient cells and identify CIP2A as an essential gene in BRCA1- and BRCA2-mutated cells. CIP2A is cytoplasmic in interphase but, in mitosis, accumulates at DNA lesions as part of a complex with TOPBP1, a multifunctional genome stability factor. Unlike PARP inhibition, CIP2A deficiency does not cause accumulation of replication-associated DNA lesions that require HR for their repair. In BRCA-deficient cells, the CIP2A-TOPBP1 complex prevents lethal mis-segregation of acentric chromosomes that arises from impaired DNA synthesis. Finally, physical disruption of the CIP2A-TOPBP1 complex is highly deleterious in BRCA-deficient tumors, indicating that CIP2A represents an attractive synthetic lethal therapeutic target for BRCA1- and BRCA2-mutated cancers.


Asunto(s)
Neoplasias , Mutaciones Letales Sintéticas , Proteínas Portadoras/genética , Inestabilidad Cromosómica , ADN , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica/genética , Recombinación Homóloga , Humanos , Proteínas Nucleares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA