Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-32179099

RESUMEN

We previously detected a submicromolar concentration of lysophosphatidic acid (LPA) in human saliva. Here, we compare LPA concentrations in human gingival crevicular fluid (GCF) from patients with periodontitis and healthy controls, and examine how the local LPA levels are regulated enzymatically. The concentrations of LPA and its precursor lysophospholipids in GCF was measured by liquid chromatography-tandem mass spectrometry. The LPA-producing and LPA-degrading enzymatic activities were measured by quantifying the liberated choline and free fatty acid, respectively. The concentration of LPA in GCF of periodontitis patients was lower than that of healthy controls, due to higher soluble lysophospholipase activity toward LPA. LPA was found to prevent survival of Sa3, a human gingival epithelium-derived tumor cell line, activate Sa3 through Ca2+ mobilization, and release interleukin 6 from Sa3 in vitro. Furthermore, local injection of LPA into the gingiva attenuated ligature-induced experimental alveolar bone loss induced by oral bacteria inoculation in a rat model of periodontitis in vivo. A high concentration of LPA in human GCF is necessary to maintain normal gingival epithelial integrity and function, protecting the progression of periodontitis.


Asunto(s)
Pérdida de Hueso Alveolar/metabolismo , Líquido del Surco Gingival/metabolismo , Lisofosfolipasa/metabolismo , Lisofosfolípidos/metabolismo , Periodontitis/metabolismo , Adulto , Anciano , Pérdida de Hueso Alveolar/etiología , Pérdida de Hueso Alveolar/prevención & control , Animales , Células Cultivadas , Femenino , Humanos , Lisofosfolípidos/uso terapéutico , Masculino , Persona de Mediana Edad , Periodontitis/complicaciones , Periodontitis/tratamiento farmacológico , Ratas , Ratas Wistar
2.
Artículo en Inglés | MEDLINE | ID: mdl-32629025

RESUMEN

A family of glycerol-based lysolipid mediators comprises lysophosphatidic acid as a representative phospholipidic member but also a monoacylglycerol as a non-phosphorus-containing member. These critical lysolipid mediators are known to be produced from different lysophospholipids by actions of lysophospholipases C and D in mammals. Some members of the glycerophosphodiesterase (GDE) family have attracted recent attention due to their phospholipid-metabolizing activity. In this study, we found selective depletion of lysophosphatidylinositol among lysophospholipids in the culture medium of COS-7 cells transfected with a vector containing glycerophosphodiester phosphodiesterase 2 (GDPD2, GDE3). Thin-layer chromatography and liquid chromatography-tandem mass spectrometry of lipids extracted from GDE3-transfected COS-7 cells exposed to fluorescent analogs of phosphatidylinositol (PI) revealed that GDE3 acted as an ecto-type lysophospholipase C preferring endogenous lysophosphatidylinositol and PI having a long-chain acyl and a short-chain acyl group rather than endogenous PI and its fluorescent analog having two long chain acyl groups. In MC3T3-E1 cells cultured with an osteogenic or mitogenic medium, mRNA expression of GDE3 was increased by culturing in 10% fetal bovine serum for several days, concomitant with increased activity of ecto-lysophospholipase C, converting arachidonoyl-lysophosphatidylinositol, a physiological agonist of G protein-coupled receptor 55, to arachidonoylglycerol, a physiological agonist of cannabinoid receptors 1 and 2. We suggest that GDE3 acts as an ecto-lysophospholipase C, by switching signaling from lysophosphatidylinositol to that from arachidonoylglycerol in an opposite direction in mouse bone remodeling.


Asunto(s)
Lisofosfolípidos/farmacología , Monoglicéridos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Animales , Línea Celular , Chlorocebus aethiops , Ratones , Hidrolasas Diéster Fosfóricas/genética , ARN Interferente Pequeño/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA