Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 159(7): 1563-77, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25525875

RESUMEN

The mechanism by which cells undergo death determines whether dying cells trigger inflammatory responses or remain immunologically silent. Mitochondria play a central role in the induction of cell death, as well as in immune signaling pathways. Here, we identify a mechanism by which mitochondria and downstream proapoptotic caspases regulate the activation of antiviral immunity. In the absence of active caspases, mitochondrial outer membrane permeabilization by Bax and Bak results in the expression of type I interferons (IFNs). This induction is mediated by mitochondrial DNA-dependent activation of the cGAS/STING pathway and results in the establishment of a potent state of viral resistance. Our results show that mitochondria have the capacity to simultaneously expose a cell-intrinsic inducer of the IFN response and to inactivate this response in a caspase-dependent manner. This mechanism provides a dual control, which determines whether mitochondria initiate an immunologically silent or a proinflammatory type of cell death.


Asunto(s)
Apoptosis , Caspasas/metabolismo , Interferón Tipo I/metabolismo , Transducción de Señal , Animales , ADN Mitocondrial/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Interferón Tipo I/inmunología , Ratones , Ratones Noqueados , Virosis/inmunología
2.
Immunity ; 40(1): 78-90, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439266

RESUMEN

Innate immune recognition controls adaptive immune responses through multiple mechanisms. The MyD88 signaling adaptor operates in many cell types downstream of Toll-like receptors (TLRs) and interleukin-1 (IL-1) receptor family members. Cell-type-specific functions of MyD88 signaling remain poorly characterized. Here, we have shown that the T cell-specific ablation of MyD88 in mice impairs not only T helper 17 (Th17) cell responses, but also Th1 cell responses. MyD88 relayed signals of TLR-induced IL-1, which became dispensable for Th1 cell responses in the absence of T regulatory (Treg) cells. Treg cell-specific ablation of MyD88 had no effect, suggesting that IL-1 acts on naive CD4(+) T cells instead of Treg cells themselves. Together, these findings demonstrate that IL-1 renders naive CD4(+) T cells refractory to Treg cell-mediated suppression in order to allow their differentiation into Th1 cells. In addition, IL-1 was also important for the generation of functional CD4(+) memory T cells.


Asunto(s)
Interleucina-1/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Células Th17/inmunología , Inmunidad Adaptativa , Animales , Células Cultivadas , Inmunidad Innata , Memoria Inmunológica , Terapia de Inmunosupresión , Interleucina-18/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factor 88 de Diferenciación Mieloide/genética , Especificidad de Órganos , Receptores de Interleucina-1/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología
3.
Int Immunol ; 25(1): 1-10, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23042773

RESUMEN

Autophagy is an evolutionarily ancient process eukaryotic cells utilize to remove and recycle intracellular material in order to maintain cellular homeostasis. In metazoans, the autophagy machinery not only functions in this capacity but also has evolved to perform a diverse repertoire of intracellular transport and regulatory functions. In response to virus infections, the autophagy machinery degrades viruses, shuttles viral pathogen-associated molecular patterns to endosomes containing Toll-like receptors, facilitates viral-antigen processing for major histocompatibility complex presentation and transports antiviral proteins to viral replication sites. This is accomplished through canonical autophagy or through processes involving distinct subsets of the autophagy-related genes (Atgs). Herein, we discuss how the variable components of the autophagy machinery contribute to antiviral defense and highlight three emerging themes: first, autophagy delivers viral cytosolic components to several distinct endolysosomal compartments; second, Atg proteins act alone, as subgroups or collectively; and third, the specificity of autophagy and the autophagy machinery is achieved by recognition of triggers and selective targeting by adaptors.


Asunto(s)
Autofagia/inmunología , Células Dendríticas/inmunología , Regulación de la Expresión Génica/inmunología , Virosis/inmunología , Virus/crecimiento & desarrollo , Presentación de Antígeno/genética , Presentación de Antígeno/inmunología , Autofagia/genética , Transporte Biológico , Células Dendríticas/virología , Endosomas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Complejo Mayor de Histocompatibilidad/genética , Complejo Mayor de Histocompatibilidad/inmunología , Transducción de Señal , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Virosis/genética , Virosis/metabolismo
4.
Proc Natl Acad Sci U S A ; 106(8): 2770-5, 2009 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-19196953

RESUMEN

Autophagy is a highly conserved process that maintains homeostasis by clearing damaged organelles and long-lived proteins. The consequences of deficiency in autophagy manifest in a variety of pathological states including neurodegenerative diseases, inflammatory disorders, and cancer. Here, we studied the role of autophagy in the homeostatic regulation of innate antiviral defense. Single-stranded RNA viruses are recognized by the members of the RIG-I-like receptors (RLRs) in the cytosol. RLRs signal through IPS-1, resulting in the production of the key antiviral cytokines, type I IFNs. Autophagy-defective Atg5(-/-) cells exhibited enhanced RLR signaling, increased IFN secretion, and resistance to infection by vesicular stomatitis virus. In the absence of autophagy, cells accumulated dysfunctional mitochondria, as well as mitochondria-associated IPS-1. Reactive oxygen species (ROS) associated with the dysfunctional mitochondria were largely responsible for the enhanced RLR signaling in Atg5(-/-) cells, as antioxidant treatment blocked the excess RLR signaling. In addition, autophagy-independent increase in mitochondrial ROS by treatment of cells with rotenone was sufficient to amplify RLR signaling in WT cells. These data indicate that autophagy contributes to homeostatic regulation of innate antiviral defense through the clearance of dysfunctional mitochondria, and revealed that ROS associated with mitochondria play a key role in potentiating RLR signaling.


Asunto(s)
Autofagia , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Animales , Proteína 5 Relacionada con la Autofagia , Células Cultivadas , Proteína 58 DEAD Box , ARN Helicasas DEAD-box , ADN Mitocondrial/metabolismo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Interferón Tipo I/biosíntesis , Macrófagos/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/fisiología , Mitocondrias/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Cell Host Microbe ; 19(6): 788-99, 2016 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-27281569

RESUMEN

Herpes simplex virus 1 (HSV-1), a leading cause of genital herpes, infects oral or genital mucosal epithelial cells before infecting the peripheral sensory nervous system. The spread of HSV-1 beyond the sensory nervous system and the resulting broader spectrum of disease are not well understood. Using a mouse model of genital herpes, we found that HSV-1-infection-associated lethality correlated with severe fecal and urinary retention. No inflammation or infection of the brain was evident. Instead, HSV-1 spread via the dorsal root ganglia to the autonomic ganglia of the enteric nervous system (ENS) in the colon. ENS infection led to robust viral gene transcription, pathological inflammatory responses, and neutrophil-mediated destruction of enteric neurons, ultimately resulting in permanent loss of peristalsis and the development of toxic megacolon. Laxative treatment rescued mice from lethality following genital HSV-1 infection. These results reveal an unexpected pathogenesis of HSV associated with ENS infection.


Asunto(s)
Sistema Nervioso Entérico/virología , Herpes Genital/virología , Herpesvirus Humano 1/patogenicidad , Megacolon Tóxico/virología , Neuronas/virología , Enfermedades Vaginales/virología , Animales , Modelos Animales de Enfermedad , Sistema Nervioso Entérico/patología , Femenino , Ganglios/patología , Ganglios/ultraestructura , Ganglios/virología , Ganglios Espinales/patología , Ganglios Espinales/virología , Genoma Viral , Herpes Genital/patología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiología , Intestinos/virología , Megacolon Tóxico/patología , Ratones , Ratones Endogámicos C57BL , Neuronas/patología , Neutrófilos/virología , Nociceptores/virología , Vagina/virología , Enfermedades Vaginales/patología , Replicación Viral/fisiología
6.
Elife ; 3: e01949, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24842874

RESUMEN

Innate immune recognition is critical for the induction of adaptive immune responses; however the underlying mechanisms remain incompletely understood. In this study, we demonstrate that T cell-specific deletion of the IL-6 receptor α chain (IL-6Rα) results in impaired Th1 and Th17 T cell responses in vivo, and a defect in Tfh function. Depletion of Tregs in these mice rescued the Th1 but not the Th17 response. Our data suggest that IL-6 signaling in effector T cells is required to overcome Treg-mediated suppression in vivo. We show that IL-6 cooperates with IL-1ß to block the suppressive effect of Tregs on CD4(+) T cells, at least in part by controlling their responsiveness to IL-2. In addition, although IL-6Rα-deficient T cells mount normal primary Th1 responses in the absence of Tregs, they fail to mature into functional memory cells, demonstrating a key role for IL-6 in CD4(+) T cell memory formation.DOI: http://dx.doi.org/10.7554/eLife.01949.001.


Asunto(s)
Inmunidad Adaptativa , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Inmunidad Innata , Memoria Inmunológica , Interleucina-6/metabolismo , Transducción de Señal , Inmunidad Adaptativa/efectos de los fármacos , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Relación Dosis-Respuesta a Droga , Inmunidad Innata/efectos de los fármacos , Inmunización , Memoria Inmunológica/efectos de los fármacos , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacología , Interleucina-6/inmunología , Interleucina-6/farmacología , Subunidad alfa del Receptor de Interleucina-6/deficiencia , Subunidad alfa del Receptor de Interleucina-6/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Ovalbúmina/administración & dosificación , Ovalbúmina/inmunología , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Células Th17/inmunología , Células Th17/metabolismo
7.
Autophagy ; 9(2): 236-8, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23095715

RESUMEN

Type I interferons (IFNs) are induced during most viral infections and are considered to be the primary and universal means of innate viral control. However, several other innate mechanisms, including autophagy, have recently been shown to play an important role in antiviral defense. In our recent study, we utilized a herpes simplex virus 1 (HSV-1) infection model to investigate the relationship between cell type and innate antiviral immune mechanisms. Our study demonstrates that dorsal root ganglion (DRG) neurons undergo an innate antiviral response to HSV-1 that differs from the antiviral program induced in mitotic cells in three distinct ways. First, DRG neurons produce less type I IFN and undergo a less effective IFN antiviral program vs. mitotic cells in response to HSV-1 infection. Second, the type I IFN program initiated in DRG neurons induces less cell death than in mitotic cells. Third, in the absence of a robust type I IFN response, DRG neurons, but not mitotic cells, rely on autophagy in HSV-1 defense. Our findings reveal a cell type-specific requirement for autophagy in defense against HSV-1, and offer insight into the cell-appropriate antiviral defense mechanism employed by neurons.


Asunto(s)
Autofagia , Herpesvirus Humano 1/inmunología , Inmunidad Innata/inmunología , Especificidad de Órganos , Animales , Ganglios Espinales/patología , Herpesvirus Humano 1/fisiología , Humanos , Ratones , Mutación/genética , Neuronas/patología , Replicación Viral/fisiología
8.
Cell Host Microbe ; 12(3): 334-45, 2012 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-22980330

RESUMEN

Type I interferons (IFNs) are considered to be the universal mechanism by which viral infections are controlled. However, many IFN-stimulated genes (ISGs) rely on antiviral pathways that are toxic to host cells, which may be detrimental in nonrenewable cell types, such as neurons. We show that dorsal root ganglionic (DRG) neurons produced little type I IFNs in response to infection with a neurotropic virus, herpes simplex type 1 (HSV-1). Further, type I IFN treatment failed to completely block HSV-1 replication or to induce IFN-primed cell death in neurons. We found that DRG neurons required autophagy to limit HSV-1 replication both in vivo and in vitro. In contrast, mucosal epithelial cells and other mitotic cells responded robustly to type I IFNs and did not require autophagy to control viral replication. These findings reveal a fundamental difference in the innate antiviral strategies employed by neurons and mitotic cells to control HSV-1 infection.


Asunto(s)
Autofagia/inmunología , Herpesvirus Humano 1/inmunología , Neuronas/inmunología , Neuronas/virología , Animales , Modelos Animales de Enfermedad , Células Epiteliales/inmunología , Ganglios Espinales/citología , Ganglios Espinales/inmunología , Ganglios Espinales/virología , Herpes Simple/inmunología , Herpes Simple/virología , Herpesvirus Humano 1/patogenicidad , Interferón Tipo I/inmunología , Ratones , Ratones Endogámicos C57BL , Replicación Viral
9.
Curr Opin Virol ; 1(3): 196-203, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21927636

RESUMEN

Autophagy is an evolutionary conserved cell process that plays a central role in eukaryotic cell metabolism. Constitutive autophagy allows cells to ensure their energy needs are met during times of starvation, degrade long-lived cellular proteins, and recycle organelles. In addition, autophagy and its machinery can also be utilized to degrade intracellular pathogens, and this function likely represents one of the earliest eukaryotic defense mechanisms against viral pathogens. Within the past decade, it has become clear that autophagy has not only retained its evolutionary ancient ability to degrade intracellular pathogens, but also has co-evolved with the vertebrate immune system to augment and fine tune antiviral immune responses. Herein, we aim to summarize these recent findings as well as to highlight key unanswered questions of the field.


Asunto(s)
Autofagia , Virosis/inmunología , Virus/inmunología , Virus/patogenicidad , Animales , Humanos , Inmunidad Innata , Virosis/virología , Fenómenos Fisiológicos de los Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA