Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Genet Metab ; 138(4): 107552, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36889041

RESUMEN

BACKGROUND AND AIMS: Low-density lipoprotein (LDL) plasma concentration decline is a biomarker for acute inflammatory diseases, including coronavirus disease-2019 (COVID-19). Phenotypic changes in LDL during COVID-19 may be equally related to adverse clinical outcomes. METHODS: Individuals hospitalized due to COVID-19 (n = 40) were enrolled. Blood samples were collected on days 0, 2, 4, 6, and 30 (D0, D2, D4, D6, and D30). Oxidized LDL (ox-LDL), and lipoprotein-associated phospholipase A2 (Lp-PLA2) activity were measured. In a consecutive series of cases (n = 13), LDL was isolated by gradient ultracentrifugation from D0 and D6 and was quantified by lipidomic analysis. Association between clinical outcomes and LDL phenotypic changes was investigated. RESULTS: In the first 30 days, 42.5% of participants died due to Covid-19. The serum ox-LDL increased from D0 to D6 (p < 0.005) and decreased at D30. Moreover, individuals who had an ox-LDL increase from D0 to D6 to over the 90th percentile died. The plasma Lp-PLA2 activity also increased progressively from D0 to D30 (p < 0.005), and the change from D0 to D6 in Lp-PLA2 and ox-LDL were positively correlated (r = 0.65, p < 0.0001). An exploratory untargeted lipidomic analysis uncovered 308 individual lipids in isolated LDL particles. Paired-test analysis from D0 and D6 revealed higher concentrations of 32 lipid species during disease progression, mainly represented by lysophosphatidyl choline and phosphatidylinositol. In addition, 69 lipid species were exclusively modulated in the LDL particles from non-survivors as compared to survivors. CONCLUSIONS: Phenotypic changes in LDL particles are associated with disease progression and adverse clinical outcomes in COVID-19 patients and could serve as a potential prognostic biomarker.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa , COVID-19 , Humanos , Lipoproteínas LDL , Biomarcadores , Lisofosfatidilcolinas
2.
J Biol Chem ; 296: 100344, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33524391

RESUMEN

A low-sodium (LS) diet has been shown to reduce blood pressure (BP) and the incidence of cardiovascular diseases. However, severe dietary sodium restriction promotes insulin resistance (IR) and dyslipidemia in animal models and humans. Thus, further clarification of the long-term consequences of LS is needed. Here, we investigated the effects of chronic LS on gastrocnemius gene and protein expression and lipidomics and its association with IR and plasma lipids in LDL receptor knockout mice. Three-month-old male mice were fed a normal sodium diet (NS; 0.5% Na; n = 12-19) or LS (0.06% Na; n = 14-20) over 90 days. Body mass (BM), BP, plasma total cholesterol, triacylglycerol (TG), glucose, hematocrit, and IR were evaluated. LS increased BM (9%), plasma TG (51%), blood glucose (19%), and IR (46%) when compared with the NS. RT-qPCR analysis revealed that genes involved in lipid uptake and oxidation were increased by the LS: Fabp3 (106%), Prkaa1 (46%), and Cpt1 (74%). Genes and proteins (assessed by Western blotting) involved in insulin signaling were not changed by the LS. Similarly, lipid species classically involved in muscle IR, such as diacylglycerols and ceramides detected by ultra-high-performance liquid chromatography coupled to mass spectrometry, were also unchanged by LS. Species of phosphatidylcholines (68%), phosphatidylinositol (90%), and free fatty acids (59%) increased while cardiolipins (41%) and acylcarnitines (9%) decreased in gastrocnemius in response to LS and were associated with glucose disposal rate. Together these results suggest that chronic LS alters glycerophospholipid and fatty acids species in gastrocnemius that may contribute to glucose and lipid homeostasis derangements in mice.


Asunto(s)
Dieta Hiposódica , Resistencia a la Insulina , Metabolismo de los Lípidos , Músculo Esquelético/metabolismo , Animales , Lipidómica , Masculino , Ratones , Sodio en la Dieta/metabolismo
3.
Nanomedicine ; 36: 102418, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34171470

RESUMEN

Radiation induces the generation of platelet-activating factor receptor (PAF-R) ligands, including PAF and oxidized phospholipids. Alternatively, PAF is also synthesized by the biosynthetic enzymes lysophosphatidylcholine acyltransferases (LPCATs) which are expressed by tumor cells including melanoma. The activation of PAF-R by PAF and oxidized lipids triggers a survival response protecting tumor cells from radiation-induced cell death, suggesting the involvement of the PAF/PAF-R axis in radioresistance. Here, we investigated the role of LPCATs in the melanoma cell radiotherapy response. LPCAT is a family of four enzymes, LPCAT1-4, and modular nucleic acid nanoparticles (NANPs) allowed for the simultaneous silencing of all four LPCATs. We found that the in vitro simultaneous silencing of all four LPCAT transcripts by NANPs enhanced the therapeutic effects of radiation in melanoma cells by increasing cell death, reducing long-term cell survival, and activating apoptosis. Thus, we propose that NANPs are an effective strategy for improving radiotherapy efficacy in melanomas.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa , Silenciador del Gen , Melanoma , Nanopartículas , Proteínas de Neoplasias , Ácidos Nucleicos , 1-Acilglicerofosfocolina O-Aciltransferasa/antagonistas & inhibidores , 1-Acilglicerofosfocolina O-Aciltransferasa/biosíntesis , Línea Celular Tumoral , Humanos , Melanoma/tratamiento farmacológico , Melanoma/enzimología , Nanopartículas/química , Nanopartículas/uso terapéutico , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/biosíntesis , Ácidos Nucleicos/química , Ácidos Nucleicos/farmacología
4.
Chem Res Toxicol ; 32(10): 2028-2041, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31496224

RESUMEN

Radical mediated oxidation of polyunsaturated fatty acids (PUFA) is known to generate a series of polyoxygenated cyclic products (PUFA-On, n ≥ 3). Here, we describe the characterization of glutathione (GSH) conjugates bound to polyoxygenated docosahexaenoic (DHA-On, n = 3-9), arachidonic (ARA-On, n = 3-7), α-linolenic (ALA-O3), and linoleic (LA-O3) acid species. Similar conjugates were also characterized for N-acetylcysteine (NAC) and Cu,Zn-superoxide dismutase (SOD1). Extensive LC-MS/MS characterization using a synthetic α-linolenic hydroxy-endoperoxide (ALA-O3) derivative revealed at least two types of mechanisms leading to thiol adduction: a mechanism involving the nucleophilic attack by thiolate anion on 1,2-dioxolane to form a sulfenate ester-bonded conjugate and a mechanism involving cleavage of the dioxolane to form a α,ß-unsaturated carbonyl followed by the Michael addition reaction. Finally, we detected a GSH conjugate with hydroxy-endoperoxide derived from linoleic acid (LA-O3) in mice liver. In summary, our study reveals the formation of a series of thiol conjugates that are bound to highly oxygenated PUFA species. GSH conjugates described in our study may potentially play relevant roles in redox and inflammatory processes, especially under high oxygen tension conditions.


Asunto(s)
Ácidos Grasos Insaturados/química , Glutatión/química , Animales , Cromatografía Liquida , Ácidos Grasos Insaturados/metabolismo , Glutatión/aislamiento & purificación , Glutatión/metabolismo , Hígado/química , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Oxidación-Reducción , Peróxidos/química , Peróxidos/metabolismo , Espectrometría de Masas en Tándem
5.
J Lipid Res ; 58(9): 1797-1807, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28679588

RESUMEN

Mechanistic target of rapamycin complex (mTORC)1 activity is increased in adipose tissue of obese insulin-resistant mice, but its role in the regulation of tissue inflammation is unknown. Herein, we investigated the effects of adipocyte mTORC1 deficiency on adipose tissue inflammation and glucose homeostasis. For this, mice with adipocyte raptor deletion and controls fed a chow or a high-fat diet were evaluated for body mass, adiposity, glucose homeostasis, and adipose tissue inflammation. Despite reducing adiposity, adipocyte mTORC1 deficiency promoted hepatic steatosis, insulin resistance, and adipose tissue inflammation (increased infiltration of macrophages, neutrophils, and B lymphocytes; crown-like structure density; TNF-α, interleukin (IL)-6, and monocyte chemoattractant protein 1 expression; IL-1ß protein content; lipid peroxidation; and de novo ceramide synthesis). The anti-oxidant, N-acetylcysteine, partially attenuated, whereas treatment with de novo ceramide synthesis inhibitor, myriocin, completely blocked adipose tissue inflammation and nucleotide oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3)-inflammasome activation, but not hepatic steatosis and insulin resistance induced by adipocyte raptor deletion. Rosiglitazone treatment, however, completely abrogated insulin resistance induced by adipocyte raptor deletion. In conclusion, adipocyte mTORC1 deficiency induces adipose tissue inflammation and NLRP3-inflammasome activation by promoting oxidative stress and de novo ceramide synthesis. Such adipose tissue inflammation, however, is not an underlying cause of the insulin resistance displayed by these mice.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/patología , Ceramidas/biosíntesis , Inflamasomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/deficiencia , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo , Adipocitos/efectos de los fármacos , Adipocitos/patología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Diana Mecanicista del Complejo 2 de la Rapamicina/deficiencia , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos
6.
Biochim Biophys Acta ; 1858(11): 2940-2956, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27565574

RESUMEN

Recent advances in lipidomic analysis in combination with various physiological experiments set the stage for deciphering the structure-function of haloarchaeal membrane lipids. Here we focused primarily on changes in lipid composition of Haloferax volcanii, but also performed a comparative analysis with four other haloarchaeal species (Halobacterium salinarum, Halorubrum lacusprofundi, Halorubrum sodomense and Haloplanus natans) all representing distinctive cell morphologies and behaviors (i.e., rod shape vs. pleomorphic behavior). Common to all five haloarchaea, our data reveal an extraordinary high level of menaquinone, reaching up to 72% of the total lipids. This ubiquity suggests that menaquinones may function beyond their ordinary role as electron and proton transporter, acting simultaneously as ion permeability barriers and as powerful shield against oxidative stress. In addition, we aimed at understanding the role of cations interacting with the characteristic negatively charged surface of haloarchaeal membranes. We propose for instance that by bridging the negative charges of adjacent anionic phospholipids, Mg2+ acts as surrogate for cardiolipin, a molecule that is known to control curvature stress of membranes. This study further provides a bioenergetic perspective as to how haloarchaea evolved following oxygenation of Earth's atmosphere. The success of the aerobic lifestyle of haloarchaea includes multiple membrane-based strategies that successfully balance the need for a robust bilayer structure with the need for high rates of electron transport - collectively representing the molecular basis to inhabit hypersaline water bodies around the planet.


Asunto(s)
Halobacterium salinarum/metabolismo , Haloferax volcanii/metabolismo , Halorubrum/metabolismo , Lípidos de la Membrana/metabolismo , Oxígeno/metabolismo , Fosfolípidos/química , Adaptación Fisiológica , Aerobiosis , Antioxidantes/química , Antioxidantes/metabolismo , Evolución Biológica , Cationes Bivalentes , Membrana Celular/química , Membrana Celular/metabolismo , Transporte de Electrón , Metabolismo Energético , Halobacterium salinarum/química , Haloferax volcanii/química , Halorubrum/química , Magnesio/química , Magnesio/metabolismo , Lípidos de la Membrana/química , Fosfolípidos/metabolismo , Salinidad , Agua de Mar/química , Agua de Mar/microbiología , Electricidad Estática , Vitamina K 2/química , Vitamina K 2/metabolismo
7.
Archaea ; 2016: 5938289, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27274708

RESUMEN

The majority of cells in nature probably exist in a stationary-phase-like state, due to nutrient limitation in most environments. Studies on bacteria and yeast reveal morphological and physiological changes throughout the stationary phase, which lead to an increased ability to survive prolonged nutrient limitation. However, there is little information on archaeal stationary phase responses. We investigated protein- and lipid-level changes in Thermococcus kodakarensis with extended time in the stationary phase. Adaptations to time in stationary phase included increased proportion of membrane lipids with a tetraether backbone, synthesis of proteins that ensure translational fidelity, specific regulation of ABC transporters (upregulation of some, downregulation of others), and upregulation of proteins involved in coenzyme production. Given that the biological mechanism of tetraether synthesis is unknown, we also considered whether any of the protein-level changes in T. kodakarensis might shed light on the production of tetraether lipids across the same period. A putative carbon-nitrogen hydrolase, a TldE (a protease in Escherichia coli) homologue, and a membrane bound hydrogenase complex subunit were candidates for possible involvement in tetraether-related reactions, while upregulation of adenosylcobalamin synthesis proteins might lend support to a possible radical mechanism as a trigger for tetraether synthesis.


Asunto(s)
Proteínas Arqueales/análisis , Lípidos/análisis , Proteoma/análisis , Thermococcus/química , Escherichia coli , Redes y Vías Metabólicas
8.
Appl Environ Microbiol ; 82(15): 4505-4516, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27208108

RESUMEN

UNLABELLED: A new clade of archaea has recently been proposed to constitute the seventh methanogenic order, the Methanomassiliicoccales, which is related to the Thermoplasmatales and the uncultivated archaeal clades deep-sea hydrothermal vent Euryarchaeota group 2 and marine group II Euryarchaeota but only distantly related to other methanogens. In this study, we investigated the membrane lipid composition of Methanomassiliicoccus luminyensis, the sole cultured representative of this seventh order. The lipid inventory of M. luminyensis comprises a unique assemblage of novel lipids as well as lipids otherwise typical for thermophilic, methanogenic, or halophilic archaea. For instance, glycerol sesterpanyl-phytanyl diether core lipids found mainly in halophilic archaea were detected, and so were compounds bearing either heptose or methoxylated glycosidic head groups, neither of which have been reported so far for other archaea. The absence of quinones or methanophenazines is consistent with a biochemistry of methanogenesis different from that of the methanophenazine-containing methylotrophic methanogens. The most distinctive characteristic of the membrane lipid composition of M. luminyensis, however, is the presence of tetraether lipids in which one glycerol backbone is replaced by either butane- or pentanetriol, i.e., lipids recently discovered in marine sediments. Butanetriol dibiphytanyl glycerol tetraether (BDGT) constitutes the most abundant core lipid type (>50% relative abundance) in M. luminyensis We have thus identified a source for these unusual orphan lipids. The complementary analysis of diverse marine sediment samples showed that BDGTs are widespread in anoxic layers, suggesting an environmental significance of Methanomassiliicoccales and/or related BDGT producers beyond gastrointestinal tracts. IMPORTANCE: Cellular membranes of members of all three domains of life, Archaea, Bacteria, and Eukarya, are largely formed by lipids in which glycerol serves as backbone for the hydrophobic alkyl chains. Recently, however, archaeal tetraether lipids with either butanetriol or pentanetriol as a backbone were identified in marine sediments and attributed to uncultured sediment-dwelling archaea. Here we show that the butanetriol-based dibiphytanyl tetraethers constitute the major lipids in Methanomassiliicoccus luminyensis, currently the only isolate of the novel seventh order of methanogens. Given the absence of these lipids in a large set of archaeal isolates, these compounds may be diagnostic for the Methanomassiliicoccales and/or closely related archaea.


Asunto(s)
Butanos/metabolismo , Euryarchaeota/aislamiento & purificación , Euryarchaeota/metabolismo , Metabolismo de los Lípidos , Metanol/metabolismo , Agua de Mar/microbiología , Euryarchaeota/clasificación , Euryarchaeota/genética , Sedimentos Geológicos/microbiología , Lípidos/química , Filogenia
9.
Environ Microbiol ; 16(11): 3515-32, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24905086

RESUMEN

Sulfide 'chimneys' characteristic of seafloor hydrothermal venting are diverse microbial habitats. ¹³C/¹²C ratios of microbial lipids have rarely been used to assess carbon assimilation pathways on these structures, despite complementing gene- and culture-based approaches. Here, we integrate analyses of the diversity of intact polar lipids (IPL) and their side-chain δ¹³C values (δ¹³ C(lipid)) with 16S rRNA gene-based phylogeny to examine microbial carbon flow on active and inactive sulfide structures from the Manus Basin. Surficial crusts of active structures, dominated by Epsilonproteobacteria, yield bacterial δ¹³C(lipid) values higher than biomass δ¹³C (total organic carbon), implicating autotrophy via the reverse tricarboxylic acid cycle. Our data also suggest δ¹³C(lipid) values vary on individual active structures without accompanying microbial diversity changes. Temperature and/or dissolved substrate effects - likely relating to variable advective-diffusive fluxes to chimney exteriors - may be responsible for differing ¹³C fractionation during assimilation. In an inactive structure, δ¹³C(lipid) values lower than biomass δ¹³C and a distinctive IPL and 16S rRNA gene diversity suggest a shift to a more diverse community and an alternate carbon assimilation pathway after venting ceases. We discuss here the potential of IPL and δ¹³C(lipid) analyses to elucidate carbon flow in hydrothermal structures when combined with other molecular tools.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Carbono/metabolismo , Respiraderos Hidrotermales/microbiología , Lípidos/análisis , Sulfuros/metabolismo , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Ecosistema , Epsilonproteobacteria/metabolismo , Respiraderos Hidrotermales/química , Filogenia , ARN Ribosómico 16S/genética
10.
Rapid Commun Mass Spectrom ; 28(10): 1144-52, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24711277

RESUMEN

RATIONALE: Studies of archaeal glycerol dibiphytanyl glycerol tetraethers (GDGTs) in the environment and cultures have exclusively focused on compounds with fully saturated alkyl moieties. Here we report a number of novel unsaturated GDGTs (uns-GDGTs) whose alkyl chains contain up to six double bonds and zero to two cyclopentyl moieties. METHODS: The identification of these lipids was achieved via comparison of lipid distribution before and after hydrogenation, characteristic retention time patterns, and diagnostic ions using liquid chromatography/tandem mass spectrometry (LC/MS/MS), and ether cleavage products using gas chromatography/mass spectrometry (GC/MS). Isomerism resulting from different unsaturation patterns in the alkyl moieties was observed and specific positions of double bonds in the biphytene and biphytadiene moieties were tentatively assigned. RESULTS: Uns-GDGTs were detected in sediment and microbial mat samples as both core lipids (CLs) and intact polar lipids (IPLs) associated with mono- or diglycosyl or phosphatidylglycerol headgroups. However, these lipids were overlooked in past investigations because conventional methods for archaeal lipid analysis are unsuitable for uns-GDGTs. Samples from distinct marine environments (Black Sea, Cariaco Basin, Discovery Basin, Eastern Mediterranean Sea, upwelling area off NW Africa, and seep sites off Crimea and Pakistan) were screened for uns-GDGTs using a new LC/MS protocol. The results show that uns-GDGTs contribute significantly to the archaeal lipid pool in anoxic methane-rich environments (Black Sea, Cariaco Basin, and both seep sites) but they were barely detected in the oxic or hypersaline settings. CONCLUSIONS: The characteristic distribution of uns-GDGTs implies that they are attractive targets for future studies aiming at the chemotaxonomy of uncultivated archaea and regulation of uns-GDGT biosynthesis.


Asunto(s)
Archaea/química , Éteres de Glicerilo/química , Lípidos/química , Mar Negro , Grasas Insaturadas/química , Cromatografía de Gases y Espectrometría de Masas , Sedimentos Geológicos/química
11.
JHEP Rep ; 6(2): 100984, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38293685

RESUMEN

Background & Aims: Lipid droplet (LD) accumulation in cells and tissues is understood to be an evolutionarily conserved tissue tolerance mechanism to prevent lipotoxicity caused by excess lipids; however, the presence of excess LDs has been associated with numerous diseases. Sepsis triggers the reprogramming of lipid metabolism and LD accumulation in cells and tissues, including the liver. The functions and consequences of sepsis-triggered liver LD accumulation are not well known. Methods: Experimental sepsis was induced by CLP (caecal ligation and puncture) in mice. Markers of hepatic steatosis, liver injury, hepatic oxidative stress, and inflammation were analysed using a combination of functional, imaging, lipidomic, protein expression and immune-enzymatic assays. To prevent LD formation, mice were treated orally with A922500, a pharmacological inhibitor of DGAT1. Results: We identified that liver LD overload correlates with liver injury and sepsis severity. Moreover, the progression of steatosis from 24 h to 48 h post-CLP occurs in parallel with increased cytokine expression, inflammatory cell recruitment and oxidative stress. Lipidomic analysis of purified LDs demonstrated that sepsis leads LDs to harbour increased amounts of unsaturated fatty acids, mostly 18:1 and 18:2. An increased content of lipoperoxides within LDs was also observed. Conversely, the impairment of LD formation by inhibition of the DGAT1 enzyme reduces levels of hepatic inflammation and lipid peroxidation markers and ameliorates sepsis-induced liver injury. Conclusions: Our results indicate that sepsis triggers lipid metabolism alterations that culminate in increased liver LD accumulation. Increased LDs are associated with disease severity and liver injury. Moreover, inhibition of LD accumulation decreased the production of inflammatory mediators and lipid peroxidation while improving tissue function, suggesting that LDs contribute to the pathogenesis of liver injury triggered by sepsis. Impact and Implications: Sepsis is a complex life-threatening syndrome caused by dysregulated inflammatory and metabolic host responses to infection. The observation that lipid droplets may contribute to sepsis-associated organ injury by amplifying lipid peroxidation and inflammation provides a rationale for therapeutically targeting lipid droplets and lipid metabolism in sepsis.

12.
Free Radic Biol Med ; 208: 285-298, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37619957

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motor neurons, systemic hypermetabolism, and inflammation. In this context, oxylipins have been investigated as signaling molecules linked to neurodegeneration, although their specific role in ALS remains unclear. Importantly, most methods focused on oxylipin analysis are based on low-resolution mass spectrometry, which usually confers high sensitivity, but not great accuracy for molecular characterization, as provided by high-resolution MS (HRMS). Here, we established an ultra-high performance liquid chromatography HRMS (LC-HRMS) method for simultaneous analysis of 126 oxylipins in plasma. Intra- and inter-day method validation showed high sensitivity (0.3-25 pg), accuracy and precision for more than 90% of quality controls. This method was applied in plasma of ALS rats overexpressing the mutant human Cu/Zn-superoxide dismutase gene (SOD1-G93A) at asymptomatic (ALS 70 days old) and symptomatic stages (ALS 120 days old), and their respective age-matched wild type controls. From the 56 oxylipins identified in plasma, 17 species were significantly altered. Remarkably, most of oxylipins linked to inflammation and oxidative stress derived from arachidonic acid (AA), like prostaglandins and mono-hydroxides, were increased in ALS 120 d rats. In addition, ketones derived from AA and linoleic acid (LA) were increased in both WT 120 d and ALS 120 d groups, supporting that age also modulates oxylipin metabolism in plasma. Interestingly, the LA-derived diols involved in fatty acid uptake and ß-oxidation, 9(10)-DiHOME and 12(13)-DiHOME, were decreased in ALS 120 d rats and showed significant synergic effects between age and disease factors. In summary, we validated a high-throughput LC-HRMS method for oxylipin analysis and provided a comprehensive overview of plasma oxylipins involved in ALS disease progression. Noteworthy, the oxylipins altered in plasma have potential to be investigated as biomarkers for inflammation and hypermetabolism in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Ratas , Humanos , Animales , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Oxilipinas , Espectrometría de Masas , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Inflamación , Modelos Animales de Enfermedad , Ratones Transgénicos , Superóxido Dismutasa/genética
13.
Artículo en Inglés | MEDLINE | ID: mdl-36535597

RESUMEN

Total absence of adipose tissue (lipoatrophy) is associated with the development of severe metabolic disorders including hepatomegaly and fatty liver. Here, we sought to investigate the impact of severe lipoatrophy induced by deletion of peroxisome proliferator-activated receptor gamma (PPARγ) exclusively in adipocytes on lipid metabolism in mice. Untargeted lipidomics of plasma, gastrocnemius and liver uncovered a systemic depletion of the essential linoleic (LA) and α-linolenic (ALA) fatty acids from several lipid classes (storage lipids, glycerophospholipids, free fatty acids) in lipoatrophic mice. Our data revealed that such essential fatty acid depletion was linked to increased: 1) capacity for liver mitochondrial fatty acid ß-oxidation (FAO), 2) citrate synthase activity and coenzyme Q content in the liver, 3) whole-body oxygen consumption and reduced respiratory exchange rate in the dark period, and 4) de novo lipogenesis and carbon flux in the TCA cycle. The key role of de novo lipogenesis in hepatic steatosis was evidenced by an accumulation of stearic, oleic, sapienic and mead acids in liver. Our results thus indicate that the simultaneous activation of the antagonic processes FAO and de novo lipogenesis in liver may create a futile metabolic cycle leading to a preferential depletion of LA and ALA. Noteworthy, this previously unrecognized cycle may also explain the increased energy expenditure displayed by lipoatrophic mice, adding a new piece to the metabolic regulation puzzle in lipoatrophies.


Asunto(s)
Hígado Graso , Lipogénesis , Animales , Ratones , Ciclo del Sustrato , Metabolismo de los Lípidos , Hígado Graso/metabolismo , Ácido alfa-Linolénico/metabolismo
14.
Archaea ; 2012: 832097, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22654563

RESUMEN

Novel cardiolipins from Archaea were detected by screening the intact polar lipid (IPL) composition of microbial communities associated with methane seepage in deep-sea sediments from the Pakistan margin by high-performance liquid chromatography electrospray ionization mass spectrometry. A series of tentatively identified cardiolipin analogues (dimeric phospholipids or bisphosphatidylglycerol, BPG) represented 0.5% to 5% of total archaeal IPLs. These molecules are similar to the recently described cardiolipin analogues with four phytanyl chains from extreme halophilic archaea. It is worth noting that cardiolipin analogues from the seep archaeal communities are composed of four isoprenoidal chains, which may contain differences in chain length (20 and 25 carbon atoms) and degrees of unsaturation and the presence of a hydroxyl group. Two novel diether lipids, structurally related to the BPGs, are described and interpreted as degradation products of archaeal cardiolipin analogues. Since archaeal communities in seep sediments are dominated by anaerobic methanotrophs, our observations have implications for characterizing structural components of archaeal membranes, in which BPGs are presumed to contribute to modulation of cell permeability properties. Whether BPGs facilitate interspecies interaction in syntrophic methanotrophic consortia remains to be tested.


Asunto(s)
Archaea/química , Cardiolipinas/aislamiento & purificación , Archaea/aislamiento & purificación , Archaea/metabolismo , Cardiolipinas/química , Membrana Celular/química , Cromatografía Liquida , Sedimentos Geológicos/microbiología , Metano/metabolismo , Pakistán , Espectrometría de Masa por Ionización de Electrospray
15.
Biochim Biophys Acta Mol Basis Dis ; 1868(6): 166371, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35218894

RESUMEN

Cardiovascular manifestations account for marked morbi-mortality in autosomal dominant polycystic kidney disease (ADPKD). Pkd1- and Pkd2-deficient mice develop cardiac dysfunction, however the underlying mechanisms remain largely unclear. It is unknown whether impairment of polycystin-1 cleavage at the G-protein-coupled receptor proteolysis site, a significant ADPKD mutational mechanism, is involved in this process. We analyzed the impact of polycystin-1 cleavage on heart metabolism using Pkd1V/V mice, a model unable to cleave this protein and with early cardiac dysfunction. Pkd1V/V hearts showed lower levels of glucose and amino acids and higher lipid levels than wild-types, as well as downregulation of p-AMPK, p-ACCß, CPT1B-Cpt1b, Ppara, Nppa and Acta1. These findings suggested decreased fatty acid ß-oxidation, which was confirmed by lower oxygen consumption by Pkd1V/V isolated mitochondria using palmitoyl-CoA. Pkd1V/V hearts also presented increased oxygen consumption in response to glucose, suggesting that alternative substrates may be used to generate energy. Pkd1V/V hearts displayed a higher density of decreased-size mitochondria, a finding associated with lower MFN1, Parkin and BNIP3 expression. These derangements were correlated with increased apoptosis and inflammation but not hypertrophy. Notably, Pkd1V/V neonate cardiomyocytes also displayed shifts in oxygen consumption and p-AMPK downregulation, suggesting that, at least partially, the metabolic alterations are not induced by kidney dysfunction. Our findings reveal that disruption of polycystin-1 cleavage leads to cardiac metabolic rewiring in mice, expanding the understanding of heart dysfunction associated with Pkd1 deficiency and likely with human ADPKD.


Asunto(s)
Riñón Poliquístico Autosómico Dominante , Canales Catiónicos TRPP , Animales , Corazón , Ratones , Mitocondrias/metabolismo , Mutación , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
16.
Rapid Commun Mass Spectrom ; 25(23): 3563-74, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22095505

RESUMEN

Archaea are ubiquitous and abundant microorganisms on Earth that mediate key global biogeochemical cycles. The headgroup attached to the sn-1 position of the glycerol backbone and the ether-linked isoprenoid lipids are among the diagnostic traits that distinguish Archaea from Bacteria and Eukarya. Over the last 30 years, numerous archaeal lipids have been purified and described in pure cultures. Coupled high-performance liquid chromatography (HPLC) ion-trap mass spectrometry (ITMS) now enables the detection and rapid identification of intact polar lipids in relatively small and complex samples, revealing a wide range of archaeal lipids in natural environments. Although major structural groups have been identified, the lack of a systematic evaluation of MS/MS fragmentation patterns has hindered the characterization of several atypical components that are therefore considered as unknowns. Here, we examined mass spectra resulting from lipid analysis of natural microbial communities using HPLC/electrospray ionization (ESI)-ITMS(n), and depicted the systematics in MS(2) fragmentation of intact archaeal lipids. This report will be particularly useful for environmental scientists interested in a rapid and straightforward characterization of intact archaeal membrane lipids.


Asunto(s)
Archaea/química , Cromatografía Líquida de Alta Presión/métodos , Glucolípidos/química , Lípidos de la Membrana/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Iones/química
17.
J Nutr Biochem ; 87: 108519, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33017610

RESUMEN

Dietary sugar is an important determinant of the development and progression of nonalcoholic fatty liver disease (NAFLD). However, the molecular mechanisms underlying the deleterious effects of sugar intake on NAFLD under energy-balanced conditions are still poorly understood. Here, we provide a comprehensive analysis of the liver lipidome and mechanistic insights into the pathogenesis of NAFLD induced by the chronic consumption of high-sugar diet (HSD). Newly weaned male Wistar rats were fed either a standard chow diet or an isocaloric HSD for 18 weeks. Livers were harvested for histological, oxidative stress, gene expression, and lipidomic analyses. Intake of HSD increased oxidative stress and induced severe liver injury, microvesicular steatosis, and ballooning degeneration of hepatocytes. Using untargeted lipidomics, we identified and quantified 362 lipid species in the liver. Rats fed with HSD displayed increased hepatic levels of triacylglycerol enriched in saturated and monounsaturated fatty acids, lipids related to mitochondrial function/structure (phosphatidylglycerol, cardiolipin, and ubiquinone), and acylcarnitine (an intermediate lipid of fatty acid beta-oxidation). HSD-fed animals also presented increased levels of some species of membrane lipids and a decreased content of phospholipids containing omega-6 fatty acids. These changes in the lipidome were associated with the downregulation of genes involved in fatty acid oxidation in the liver. In conclusion, our data suggest that the chronic intake of a HSD, even under isocaloric conditions, induces lipid overload, and inefficient/impaired fatty acid oxidation in the liver. Such events lead to marked disturbance in hepatic lipid metabolism and the development of NAFLD.


Asunto(s)
Dieta de Carga de Carbohidratos/efectos adversos , Metabolismo de los Lípidos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Lipidómica , Masculino , Redes y Vías Metabólicas , Ratas Wistar
18.
Artículo en Inglés | MEDLINE | ID: mdl-34004356

RESUMEN

The nutrient sensors peroxisome proliferator-activated receptor γ (PPARγ) and mechanistic target of rapamycin complex 1 (mTORC1) closely interact in the regulation of adipocyte lipid storage. The precise mechanisms underlying this interaction and whether this extends to other metabolic processes and the endocrine function of adipocytes are still unknown. We investigated herein the involvement of mTORC1 as a mediator of the actions of the PPARγ ligand rosiglitazone in subcutaneous inguinal white adipose tissue (iWAT) mass, endocrine function, lipidome, transcriptome and branched-chain amino acid (BCAA) metabolism. Mice bearing regulatory associated protein of mTOR (Raptor) deletion and therefore mTORC1 deficiency exclusively in adipocytes and littermate controls were fed a high-fat diet supplemented or not with the PPARγ agonist rosiglitazone (30 mg/kg/day) for 8 weeks and evaluated for iWAT mass, lipidome, transcriptome (Rnaseq), respiration and BCAA metabolism. Adipocyte mTORC1 deficiency not only impaired iWAT adiponectin transcription, synthesis and secretion, PEPCK mRNA levels, triacylglycerol synthesis and BCAA oxidation and mRNA levels of related proteins but also completely blocked the upregulation in these processes induced by pharmacological PPARγ activation with rosiglitazone. Mechanistically, adipocyte mTORC1 deficiency impairs PPARγ transcriptional activity by reducing PPARγ protein content, as well as by downregulating C/EBPα, a co-partner and facilitator of PPARγ. In conclusion, mTORC1 and PPARγ are essential partners involved in the regulation of subcutaneous adipose tissue adiponectin production and secretion and BCAA oxidative metabolism.


Asunto(s)
Adiponectina/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Glicerol/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , PPAR gamma/metabolismo , Grasa Subcutánea/metabolismo , Regulación hacia Arriba , Animales , Ratones , Oxidación-Reducción
19.
Rapid Commun Mass Spectrom ; 24(19): 2817-26, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20857440

RESUMEN

Glycolipids are prominent constituents in the membranes of cells from all domains of life. For example, diglycosyl-glycerol dibiphytanyl glycerol tetraethers (2Gly-GDGTs) are associated with methanotrophic ANME-1 archaea and heterotrophic benthic archaea, two archaeal groups of global biogeochemical importance. The hydrophobic biphytane moieties of 2Gly-GDGTs from these two uncultivated archaeal groups exhibit distinct carbon isotopic compositions. To explore whether the isotopic compositions of the sugar headgroups provide additional information on the metabolism of their producers, we developed a procedure to analyze the δ(13)C values of glycosidic headgroups. Successful determination was achieved by (1) monitoring the contamination from free sugars during lipid extraction and preparation, (2) optimizing the hydrolytic conditions for glycolipids, and (3) derivatizing the resulting sugars into aldononitrile acetate derivatives, which are stable enough to withstand a subsequent column purification step. First results of δ(13)C values of sugars cleaved from 2Gly-GDGTs in two marine sediment samples, one containing predominantly ANME-1 archaea and the other benthic archaea, were obtained and compared with the δ(13)C values of the corresponding biphytanes. In both samples the dominant sugar headgroups were enriched in (13)C relative to the corresponding major biphytane. This (13)C enrichment was significantly larger in the putative major glycolipids from ANME-1 archaea (∼15‰) than in those from benthic archaea (<7‰). This method opens a new analytical window for the examination of carbon isotopic relationships between sugars and lipids in uncultivated organisms.


Asunto(s)
Archaea/química , Isótopos de Carbono/análisis , Diglicéridos/química , Glucolípidos/química , Marcaje Isotópico/métodos , Isótopos de Carbono/química , Sedimentos Geológicos/química , Glucolípidos/aislamiento & purificación , Lípidos de la Membrana/química , Lípidos de la Membrana/aislamiento & purificación
20.
Artículo en Inglés | MEDLINE | ID: mdl-31676440

RESUMEN

The C. elegans lipase-like 5 (lipl-5) gene is predicted to code for a lipase homologous to the human gastric acid lipase. Its expression was previously shown to be modulated by nutritional or immune cues, but nothing is known about its impact on the lipid landscape and ensuing functional consequences. In the present work, we used mutants lacking LIPL-5 protein and found that lipl-5 is important for normal lipidome composition as well as its remodeling in response to food deprivation. Particularly, lipids with signaling functions such as ceramides and mitochondrial lipids were affected by lipl-5 silencing. In comparison with wild type worms, animals lacking LIPL-5 were enriched in cardiolipins linked to polyunsaturated C20 fatty acids and coenzyme Q-9. Differences in mitochondrial lipid composition were accompanied by differences in mitochondrial activity as mitochondria from well-fed lipl-5 mutants were significantly more able to oxidize respiratory substrates when compared with mitochondria from well-fed wild type worms. Strikingly, starvation elicited important changes in mitochondrial activity in wild type worms, but not in lipl-5 worms. This indicates that this lipase is a determinant of mitochondrial functional remodeling in response to food withdrawal.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Lipasa/metabolismo , Mitocondrias/metabolismo , Inanición/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/genética , Lipasa/genética , Metabolismo de los Lípidos/fisiología , Longevidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA