Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 604: 14-21, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35279441

RESUMEN

l-Arabinose 1-dehydrogenase (AraDH) catalyzes the NAD(P)+-dependent oxidation of l-arabinose to L-arabinono-1,4-lactone in the non-phosphorylative l-arabinose pathway, and is classified into glucose-fructose oxidoreductase and short-chain dehydrogenase/reductase (SDR). We herein report the crystal structure of a SDR-type AraDH (from Herbaspirillum huttiense) for the first time. The interactions between Asp49 and the 2'- and 3'-hydroxyl groups of NAD+ were consistent with strict specificity for NAD+. In a binding model for the substrate, Ser155 and Tyr168, highly conserved in the SDR superfamily, interacted with the C1 and/or C2 hydroxyl(s) of l-arabinose, whereas interactions between Asp107, Arg109, and Gln206 and the C2 and/or C3 hydroxyl(s) were unique to AraDH. Trp200 significantly contributed to the selectivities of the C4 hydroxyl and C6 methyl of substrates.


Asunto(s)
Arabinosa , Deshidrogenasas-Reductasas de Cadena Corta , Arabinosa/química , NAD/metabolismo , Oxidorreductasas/metabolismo , Deshidrogenasas-Reductasas de Cadena Corta/metabolismo , Especificidad por Sustrato
2.
Biochem Biophys Res Commun ; 530(1): 203-208, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32828286

RESUMEN

L-Arabinose 1-dehydrogenase (AraDH) is responsible for the first step of the non-phosphorylative L-arabinose pathway from bacteria, and catalyzes the NAD(P)+-dependent oxidation of L-arabinose to L-arabinonolactone. This enzyme belongs to the so-called Gfo/Idh/MocA protein superfamily, but has a very poor phylogenetic relationship with other functional members. We previously reported the crystal structures of AraDH without a ligand and in complex with NADP+. To clarify the underlying catalytic mechanisms in more detail, we herein elucidated the crystal structure in complex with L-arabinose and NADP+. In addition to the previously reported five amino acid residues (Lys91, Glu147, His153, Asp169, and Asn173), His119, Trp152, and Trp231 interacted with L-arabinose, which were not found in substrate recognition by other Gfo/Idh/MocA members. Structure-based site-directed mutagenic analyses suggested that Asn173 plays an important role in catalysis, whereas Trp152, Trp231, and His119 contribute to substrate binding. The preference of NADP+ over NAD+ was significantly subjected by a pair of Ser37 and Arg38, whose manners were similar to other Gfo/Idh/MocA members.


Asunto(s)
Arabinosa/metabolismo , Azospirillum brasilense/metabolismo , Proteínas Bacterianas/metabolismo , Deshidrogenasas de Carbohidratos/metabolismo , NADP/metabolismo , Secuencia de Aminoácidos , Arabinosa/química , Azospirillum brasilense/química , Proteínas Bacterianas/química , Deshidrogenasas de Carbohidratos/química , Cristalografía por Rayos X , Modelos Moleculares , NADP/química , Conformación Proteica
3.
Sci Rep ; 13(1): 1920, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732376

RESUMEN

Xylitol dehydrogenase (XDH) catalyzes the NAD+-dependent oxidization of xylitol into D-xylulose, and belongs to a zinc-dependent medium-chain dehydrogenase/reductase family. This protein family consists of enzymes with one or two zinc atoms per subunit, among which catalytic zinc is necessary for the activity. Among many XDHs from yeast and fungi, XDH from Pichia stipitis is one of the key enzymes for bioethanol production by lignocellulosic biomass, and possesses only a catalytic zinc atom. Despite its importance in bioindustry, a structural data of XDH has not yet been available, and little insight into the role of a second zinc atom in this protein family is known. We herein report the crystal structure of XDH from P. stipitis using a thermostabilized mutant. In the refined structure, a second zinc atom clearly coordinated with four artificially introduced cysteine ligands. Homologous mutations in XDH from Saccharomyces cerevisiae also stabilized and enhanced activity. The substitution of each of the four cysteine ligands with an aspartate in XDH from Schizosaccharomyces pombe contributed to the significantly better maintenance of activity and thermostability than their substitution with a serine, providing a novel hypothesis for how this zinc atom was eliminated.


Asunto(s)
D-Xilulosa Reductasa , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , D-Xilulosa Reductasa/genética , D-Xilulosa Reductasa/química , D-Xilulosa Reductasa/metabolismo , Xilitol/metabolismo , Zinc/metabolismo , Cisteína/metabolismo , Biomasa , Pichia/metabolismo , Xilosa/metabolismo , Aldehído Reductasa/genética , Fermentación
4.
FEBS Lett ; 595(5): 637-646, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33482017

RESUMEN

Several microorganisms can utilize l-rhamnose as a carbon and energy source through the nonphosphorylative metabolic pathway, in which l-rhamnose 1-dehydrogenase (RhaDH) catalyzes the NAD(P)+ -dependent oxidization of l-rhamnose to l-rhamnono-1,4-lactone. We herein investigated the crystal structures of RhaDH from Azotobacter vinelandii in ligand-free, NAD+ -bound, NADP+ -bound, and l-rhamnose- and NAD+ -bound forms at 1.9, 2.1, 2.4, and 1.6 Å resolution, respectively. The significant interactions with the 2'-phosphate group of NADP+ , but not the 2'-hydroxyl group of NAD+ , were consistent with a preference for NADP+ over NAD+ . The C5-OH and C6-methyl groups of l-rhamnose were recognized by specific residues of RhaDH through hydrogen bonds and hydrophobic contact, respectively, which contribute to the different substrate specificities from other aldose 1-dehydrogenases in the short-chain dehydrogenase/reductase superfamily.


Asunto(s)
Azotobacter vinelandii/enzimología , Proteínas Bacterianas/química , Deshidrogenasas de Carbohidratos/química , Coenzimas/química , NADP/química , Ramnosa/química , Secuencia de Aminoácidos , Azotobacter vinelandii/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/metabolismo , Metabolismo de los Hidratos de Carbono , Dominio Catalítico , Clonación Molecular , Coenzimas/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , NADP/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ramnosa/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA