Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 463
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Immunol ; 20(7): 852-864, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31213723

RESUMEN

Dendritic cells (DC) are currently classified as conventional DCs (cDCs) and plasmacytoid DCs (pDCs). Through a combination of single-cell transcriptomic analysis, mass cytometry, in vivo fate mapping and in vitro clonal assays, here we show that, at the single-cell level, the priming of mouse hematopoietic progenitor cells toward the pDC lineage occurs at the common lymphoid progenitor stage, indicative of early divergence of the pDC and cDC lineages. We found the transcriptional signature of a pDC precursor stage, defined here, in the IL-7Rα+ common lymphoid progenitor population and identified Ly6D, IL-7Rα, CD81 and CD2 as key markers of pDC differentiation, which distinguish pDC precursors from cDC precursors. In conclusion, pDCs developed in the bone marrow from a Ly6DhiCD2hi lymphoid progenitor cell and differentiated independently of the myeloid cDC lineage.


Asunto(s)
Antígenos Ly/metabolismo , Células Dendríticas/citología , Células Dendríticas/metabolismo , Células Progenitoras Linfoides/citología , Células Progenitoras Linfoides/metabolismo , Células Progenitoras Mieloides/citología , Células Progenitoras Mieloides/metabolismo , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biomarcadores , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Citometría de Flujo , Proteínas Ligadas a GPI/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Ratones , Transcriptoma
2.
Nat Immunol ; 17(1): 57-64, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26523868

RESUMEN

Rapid activation of memory CD4(+) T helper 2 (TH2) cells during allergic inflammation requires their recruitment into the affected tissue. Here we demonstrate that group 2 innate lymphoid (ILC2) cells have a crucial role in memory TH2 cell responses, with targeted depletion of ILC2 cells profoundly impairing TH2 cell localization to the lungs and skin of sensitized mice after allergen re-challenge. ILC2-derived interleukin 13 (IL-13) is critical for eliciting production of the TH2 cell-attracting chemokine CCL17 by IRF4(+)CD11b(+)CD103(-) dendritic cells (DCs). Consequently, the sentinel function of DCs is contingent on ILC2 cells for the generation of an efficient memory TH2 cell response. These results elucidate a key innate mechanism in the regulation of the immune memory response to allergens.


Asunto(s)
Células Dendríticas/inmunología , Hipersensibilidad/inmunología , Memoria Inmunológica/inmunología , Activación de Linfocitos/inmunología , Linfocitos/inmunología , Células Th2/inmunología , Animales , Modelos Animales de Enfermedad , Citometría de Flujo , Inmunidad Innata/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos
4.
Cell Mol Life Sci ; 81(1): 116, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438808

RESUMEN

Microglia regulate synaptic function in various ways, including the microglial displacement of the surrounding GABAergic synapses, which provides important neuroprotection from certain diseases. However, the physiological role and underlying mechanisms of microglial synaptic displacement remain unclear. In this study, we observed that microglia exhibited heterogeneity during the displacement of GABAergic synapses surrounding neuronal soma in different cortical regions under physiological conditions. Through three-dimensional reconstruction, in vitro co-culture, two-photon calcium imaging, and local field potentials recording, we found that IL-1ß negatively modulated microglial synaptic displacement to coordinate regional heterogeneity in the motor cortex, which impacted the homeostasis of the neural network and improved motor learning ability. We used the Cre-Loxp system and found that IL-1R1 on glutamatergic neurons, rather than that on microglia or GABAergic neurons, mediated the negative effect of IL-1ß on synaptic displacement. This study demonstrates that IL-1ß is critical for the regional heterogeneity of synaptic displacement by coordinating different actions of neurons and microglia via IL-1R1, which impacts both neural network homeostasis and motor learning ability. It provides a theoretical basis for elucidating the physiological role and mechanism of microglial displacement of GABAergic synapses.


Asunto(s)
Aprendizaje , Microglía , Calcio , Neuronas GABAérgicas , Interleucina-1beta , Sinapsis
5.
Plant J ; 114(2): 279-292, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36738107

RESUMEN

Terrestrial plants emit volatiles into the atmosphere to attract both pollinators and the enemies of herbivores, for defense. Phalaenopsis bellina is a scented orchid species in which the main scent components are monoterpenes, including linalool and geraniol, and their derivatives. Here, we investigated whether ABC transporters are involved in floral scent emission. We carried out whole-genome identification of ABC transporter-related genes using four floral transcriptomics libraries of P. bellina. We identified 86 ABC subfamily G genes related to terpenoid transport. After comparing the gene expression patterns of P. bellina with that of Phalaenopsis aphrodite subsp. formosana, a scentless species, followed by gene-to-gene correlation analysis, PbABCG1 and PbABCG2 were selected. The temporal expression of both PbABCG1 and PbABCG2 was highly correlated with that of the key enzyme PbGDPS and the major transcription factor PbbHLH4 in monoterpene biosynthesis, with optimal expression on day 5 post-anthesis. Spatial gene expression analysis showed that PbABCG1 was highly expressed in sepals, whereas PbABCG2 was expressed in the lip. Subcellular localization with a GFP fusion protein revealed that both PbABCG1 and PbABCG2 are cytoplasmic membrane proteins. Co-downregulation of PbABCG1 and PbABCG2 using both double-strand RNA interference and tobacco rattle virus-based gene silencing led to a significant decrease in monoterpene emission, accompanied by an increase in the internal monoterpene pools. Furthermore, ectopic expression of PbABCG1 and PbABCG2 in an ABC16- mutant yeast strain rescued its tolerance to geraniol. Altogether, our results indicate that PbABCG1 and PbABCG2 play substantial roles in monoterpene transport/emission in P. bellina floral scent.


Asunto(s)
Monoterpenos , Orchidaceae , Monoterpenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/metabolismo , Orchidaceae/genética
6.
J Am Chem Soc ; 146(21): 14587-14592, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38716882

RESUMEN

The ability to controllably move gaseous ions is an essential aspect of ion-based spectrometry (e.g., mass spectrometry and ion mobility spectrometry) as well as materials processing. At higher pressures, ion motion is largely governed by diffusion and multiple collisions with neutral gas molecules. Thus, high-pressure ion optics based on electrostatics require large fields, radio frequency drives, complicated geometries, and/or partially transmissive grids that become contaminated. Here, we demonstrate that low-power standing acoustic waves can be used to guide, block, focus, and separate beams of ions akin to electrostatic ion optics. Ions preferentially travel through the static-pressure regions ("nodes") while neutral gas does not appear to be impacted by the acoustic field structure and continues along a straight trajectory. This acoustic ion manipulation (AIM) approach has broad implications for ion manipulation techniques at high pressure, while expanding our fundamental understanding of the behavior of ions in gases.

7.
Small ; : e2401159, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716681

RESUMEN

Defects can introduce atomic structural modulation and tailor performance of materials. Herein, it demonstrates that semiconductor WO3 with inert electrocatalytic behavior can be activated through defect-induced tensile strains. Structural characterizations reveal that when simply treated in Ar/H2 atmosphere, oxygen vacancies will generate in WO3 and cause defective structures. Stacking faults are found in defects, thus modulating electronic structure and transforming electrocatalytic-inert WO3 into highly active electrocatalysts. Density functional theory (DFT) calculations are performed to calculate *H adsorption energies on various WOx surfaces, revealing the oxygen vacancy composition and strain predicted to optimize the catalytic activity of hydrogen evolution reaction (HER). Such defective tungsten oxides can be integrated into commercial proton exchange membrane (PEM) electrolyser with comparable performance toward Pt-based PEM. This work demonstrates defective metal oxides as promising non-noble metal catalysts for commercial PEM green-hydrogen generation.

8.
Nat Mater ; 22(10): 1236-1242, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37652991

RESUMEN

Liquids confined down to the atomic scale can show radically new properties. However, only indirect and ensemble measurements operate in such extreme confinement, calling for novel optical approaches that enable direct imaging at the molecular level. Here we harness fluorescence originating from single-photon emitters at the surface of hexagonal boron nitride for molecular imaging and sensing in nanometrically confined liquids. The emission originates from the chemisorption of organic solvent molecules onto native surface defects, revealing single-molecule dynamics at the interface through the spatially correlated activation of neighbouring defects. Emitter spectra further offer a direct readout of the local dielectric properties, unveiling increasing dielectric order under nanometre-scale confinement. Liquid-activated native hexagonal boron nitride defects bridge the gap between solid-state nanophotonics and nanofluidics, opening new avenues for nanoscale sensing and optofluidics.

9.
Nat Immunol ; 13(3): 229-36, 2012 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-22267218

RESUMEN

Nuocytes are essential in innate type 2 immunity and contribute to the exacerbation of asthma responses. Here we found that nuocytes arose in the bone marrow and differentiated from common lymphoid progenitors, which indicates they are distinct, previously unknown members of the lymphoid lineage. Nuocytes required interleukin 7 (IL-7), IL-33 and Notch signaling for development in vitro. Pro-T cell progenitors at double-negative stage 1 (DN1) and DN2 maintained nuocyte potential in vitro, although the thymus was not essential for nuocyte development. Notably, the transcription factor RORα was critical for the development of nuocytes and their role in the expulsion of parasitic worms.


Asunto(s)
Diferenciación Celular , Leucocitos/inmunología , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Animales , Interleucina-7/inmunología , Interleucina-7/metabolismo , Leucocitos/citología , Leucocitos/metabolismo , Ratones , Nippostrongylus/inmunología , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Transducción de Señal , Infecciones por Strongylida/inmunología , Timocitos/inmunología
10.
Plant Cell Environ ; 47(3): 799-816, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38111215

RESUMEN

Phosphorus (P) is a crucial macronutrient for plant growth, development, and reproduction. The effects of low P (LP) stress on leaf senescence and the role of PHR1 in LP-induced leaf senescence are still unknown. Here, we report that PHR1 plays a crucial role in LP-induced leaf senescence, showing delayed leaf senescence in phr1 mutant and accelerated leaf senescence in 35S:PHR1 transgenic Arabidopsis under LP stress. The transcriptional profiles indicate that 763 differentially expressed SAGs (DE-SAGs) were upregulated and 134 DE-SAGs were downregulated by LP stress. Of the 405 DE-SAGs regulated by PHR1, 27 DE-SAGs were involved in P metabolism and transport. PHR1 could bind to the promoters of six DE-SAGs (RNS1, PAP17, SAG113, NPC5, PLDζ2, and Pht1;5), and modulate them in LP-induced senescing leaves. The analysis of RNA content, phospholipase activity, acid phosphatase activity, total P and phosphate content also revealed that PHR1 promotes P liberation from senescing leaves and transport to young tissues under LP stress. Our results indicated that PHR1 is one of the crucial modulators for P recycling and redistribution under LP stress, and the drastic decline of P level is at least one of the causes of early senescence in P-deficient leaves.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fósforo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Senescencia de la Planta , Factores de Transcripción/metabolismo , Fosfatos/metabolismo , Hojas de la Planta/metabolismo , Homeostasis , Regulación de la Expresión Génica de las Plantas
11.
Phys Rev Lett ; 132(15): 156503, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38683001

RESUMEN

The "symmetric mass generation" (SMG) quantum phase transition discovered in recent years has attracted great interest from both condensed matter and high energy theory communities. Here, interacting Dirac fermions acquire a gap without condensing any fermion bilinear mass term or any concomitant spontaneous symmetry breaking. It is hence beyond the conventional Gross-Neveu-Yukawa-Higgs paradigm. One important question we address in this Letter is whether the SMG transition corresponds to a true unitary conformal field theory. We employ the sharp diagnosis including the scaling of disorder operator and Rényi entanglement entropy in large-scale lattice model quantum Monte Carlo simulations. Our results strongly suggest that the SMG transition is indeed an unconventional quantum phase transition and it should correspond to a true (2+1)d unitary conformal field theory.

12.
Inflamm Res ; 73(4): 597-617, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38353723

RESUMEN

OBJECTIVE: PANoptosis, a new form of regulated cell death, concomitantly manifests hallmarks for pyroptosis, apoptosis, and necroptosis. It has been usually observed in macrophages, a class of widely distributed innate immune cells in various tissues, upon pathogenic infections. The second-generation curaxin, CBL0137, can trigger necroptosis and apoptosis in cancer-associated fibroblasts. This study aimed to explore whether CBL0137 induces PANoptosis in macrophages in vitro and in mouse tissues in vivo. METHODS: Bone marrow-derived macrophages and J774A.1 cells were treated with CBL0137 or its combination with LPS for indicated time periods. Cell death was assayed by propidium iodide staining and immunoblotting. Immunofluorescence microscopy was used to detect cellular protein distribution. Mice were administered with CBL0137 plus LPS and their serum and tissues were collected for biochemical and histopathological analyses, respectively. RESULTS: The results showed that CBL0137 alone or in combination with LPS induced time- and dose-dependent cell death in macrophages, which was inhibited by a combination of multiple forms of cell death inhibitors but not each alone. This cell death was independent of NLRP3 expression. CBL0137 or CBL0137 + LPS-induced cell death was characterized by simultaneously increased hallmarks for pyroptosis, apoptosis and necroptosis, indicating that this is PANoptosis. Induction of PANoptosis was associated with Z-DNA formation in the nucleus and likely assembly of PANoptosome. ZBP1 was critical in mediating CBL0137 + LPS-induced cell death likely by sensing Z-DNA. Moreover, intraperitoneal administration of CBL0137 plus LPS induced systemic inflammatory responses and caused multi-organ (including the liver, kidney and lung) injury in mice due to induction of PANoptosis in these organs. CONCLUSIONS: CBL0137 alone or plus inflammatory stimulation induces PANoptosis both in vitro and in vivo, which is associated with systemic inflammatory responses in mice.


Asunto(s)
Carbazoles , ADN de Forma Z , Neoplasias , Ratones , Animales , Lipopolisacáridos/farmacología , Apoptosis , Piroptosis
13.
Parasitol Res ; 123(4): 189, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639821

RESUMEN

Toxocara canis is a parasitic zoonose that is distributed worldwide and is one of the two pathogens causing toxocariasis. After infection, it causes serious public health and safety problems, which pose significant veterinary and medical challenges. To better understand the regulatory effects of T. canis infection on the host immune cells, murine macrophages (RAW264.7) were incubated with recombinant T. canis C-type lectin 4 (rTc-CTL-4) protein in vitro. The quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to analyze the nucleotide-binding oligomerization domain-containing protein 1/2 (NOD1/2), receptor-interacting protein 2 (RIP2), nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), and mitogen-activated protein kinase (MAPK) on mRNA level and protein expression level in macrophages. Our results indicated that 10 µg/mL rTc-CTL-4 protein could modulate the expression of NOD1, NOD2, and RIP2 at both the transcriptional and translational levels. The protein translation levels of NF-κB, P-p65, p38, and P-p38 in macrophages were also modulated by rTc-CTL-4 protein. Macrophages were co-incubated with rTc-CTL-4 protein after siRNA silencing of NOD1, NOD2, and RIP2. The expression levels of NF-κB, P-p65, p38, and P-p38 were significantly changed compared with the negative control groups (Neg. Ctrl.). Taken together, rTc-CTL-4 protein seemed to act on NOD1/2-RIP2-NF-κB and MAPK signaling pathways in macrophages and might activate MAPK and NF-κB signaling pathways by regulating NOD1, NOD2, and RIP2. The insights from the above studies could contribute to our understanding of immune recognition and regulatory mechanisms of T. canis infection in the host animals.


Asunto(s)
FN-kappa B , Toxocara canis , Animales , Ratones , FN-kappa B/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Toxocara canis/metabolismo , Transducción de Señal/fisiología , Macrófagos
14.
Plant Dis ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744710

RESUMEN

Lippia (Phyla canescens) is a fast-growing, mat-forming, and prostrate perennial plant well adapted to infertile, high-saline, and drought environments (Leigh, et al. 2004). It arrived in China from Japan as a flowering ground cover in 2001 (Cai, et al. 2004). In June 2022, southern blight appeared in our nursery of the Floriculture Research Institute of Guangdong Academy of Agricultural Sciences. High temperature and damp environment are major factors for this disease. The symptoms of top-layer plants were not easily detected, but they were slightly yellowed. A yellowish-brown water-soak lesion appeared on the stems and lowest leaves exposed to soil. White mycelium appeared in the middle stage. Finally, the surface plants showed water-soak decay, and a mass of beige to black-brown rapeseed-shaped sclerotia appeared on the residue and surrounding soil; these plants died. Sclerotia and mycelia were collected from disease tissue, and after surface sterilization, sclerotia was cultured on potato dextrose agar (PDA) at 28±2°C in an incubator without light. Eight fungal isolates with similar colony morphologies were consistently isolated by purifying from different sampling areas. The isolates exhibited obvious septa and a clamp connection structure within the white mycelium. The average growth rate was 26.86±0.06 mm/day. Numerous white granular sclerotia were produced on the mycelium 6 days later. The sclerotia with a diameter of 1.24±0.07mm (n=189) gradually changed from diage to yellow to brown. A typical strain B1 was selected for further identification, targeting its 18S rRNA and LSU rRNA sequences (Yang, et al. 2011; Xue, et al. 2019). Its 18S rRNA sequence (GenBank Accession No. OR517233, 1626 bp) is 99.63% and 99.57% identical to Athelia rolfsii (AY665774, 1179bp; KC670714, 1775bp; JF819726, 1781bp). Its LSU rRNA sequence (OR539570, 757 bp) is 99.87% identical to Agroathelia rolfsii (OR526537, 904 bp). For Athelia rolfsii, a synonym of Agroathelia rolfsii, by combining the morphological characteristics and molecular identification, the isolate pathogen B1 was confirmed to be Agroathelia rolfsii (the teleomorph of Sclerotium rolfsii). To fullfill Koch's postulates, we inoculated the mycelial plugs to healthy lippia stems and leaves which has grown for one year, with PDA plugs free of mycelium as the control. All the plants were kept in a greenhouse at 28±2°C with a 14-h photoperiod and 80% relative humidity. Each treatment was repeated thrice and vaccinated with 6 points. At 7 d following inoculation, all plants inoculated with B1 showed typical symptoms, but the control group was asymptomatic, and sclerotia appeared 17d after inoculation. Using the same protocol mentioned above, pathogenic fungal was reisolated only from treated groups, but not from the control group. Chose three of the pathogens for 18S rRNA and LSU rRNA sequencing, the results showed 100% identity to B1, the same as its microstructure. There are few reports about the disease on P. canescens. Sosa (2007) investigated the pathogens on P. canescens in Argentina, 16 fungi were found but no A. rolfsii. Sclerotium rolfsii were identified on P. nodiflora or P. lanceolata (Michaux) Greene in America (Farr, et al. 1989). To our knowledge, this is the first report in China. Because this pathogen has wide-ranging hosts and causes serious damage, the results from this study will offer guidance for the prevention and treatment of this disease.

15.
Mod Rheumatol ; 34(2): 247-264, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36961736

RESUMEN

Little is known about the association between coronavirus disease 2019 (COVID-19) and autoimmune diseases, especially in the case of systemic lupus erythematosus (SLE). SLE patients met with many questions during the pandemic in COVID-19, such as how to minimize risk of infection, the complex pathological features and cytokine profiles, diagnosis and treatment, rational choice of drugs and vaccine, good nursing, psychological supervision, and so on. In this study, we review and discuss the multifaceted effects of the COVID-19 pandemic on patients living with SLE using the available literature. Cross-talk in implicated inflammatory pathways/mechanisms exists between SLE and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and SARS-CoV-2 displays similar clinical characteristics and immuno-inflammatory responses to SLE. Current epidemiological data inadequately assess the risk and severity of COVID-19 infection in patients with SLE. More evidence has shown that hydroxychloroquine and chloroquine cannot prevent COVID-19. During the pandemic, patients with SLE had a higher rate of hospitalization. Vaccination helps to reduce the risk of infection. Several therapies for patients with SLE infected with COVID-19 are discussed. The cases in the study can provide meaningful information for clinical diagnosis and management. Our main aim is to help preventing infection and highlight treatment options for patients with SLE infected with COVID-19.


Asunto(s)
COVID-19 , Lupus Eritematoso Sistémico , Humanos , COVID-19/epidemiología , COVID-19/complicaciones , Pandemias/prevención & control , SARS-CoV-2 , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/diagnóstico , Lupus Eritematoso Sistémico/tratamiento farmacológico , Hidroxicloroquina/uso terapéutico
16.
J Neurochem ; 165(5): 741-755, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36840377

RESUMEN

Parkinson's disease (PD) is a common movement disorder caused by a characteristic loss of dopaminergic neurons in the substantia nigra and degeneration of dopamine terminals in the dorsal striatum. Previous studies have suggested that oxidative stress-induced DNA damage may be involved in PD pathogenesis, as steady-state levels of several types of oxidized nucleobases were shown to be elevated in PD brain tissues. These DNA lesions are normally removed from the genome by base excision repair, which is initiated by DNA glycosylase enzymes such as endonuclease VIII-like 1 (Neil1). In this study, we show that Neil1 plays an important role in limiting oxidative stress-induced degeneration of dopaminergic neurons. In particular, Neil1-deficient male mice exhibited enhanced sensitivity to nigrostriatal degeneration after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration, and Neil1-deficient animals had higher levels of γH2AX-marked DNA damage than wild-type (WT) controls, regardless of treatment status. Moreover, MPTP-treated Neil1-/- male mice had slightly elevated expression of genes related to the nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent antioxidant pathway. Treatment with the Nrf2 activator, monomethyl fumarate, reduced PD-like behaviors and pathology in Neil1-/- male mice, suggesting that Neil1 is an important defense molecule in an oxidative cellular environment. Taken together, these results suggest that Neil1 DNA glycosylase may play an important role in limiting oxidative stress-mediated PD pathogenesis.


Asunto(s)
ADN Glicosilasas , Enfermedad de Parkinson , Masculino , Ratones , Animales , Enfermedad de Parkinson/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Neuronas Dopaminérgicas/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Sustancia Negra/patología , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Cuerpo Estriado/metabolismo
17.
Apoptosis ; 28(11-12): 1646-1665, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37702860

RESUMEN

Macrophages represent the first lines of innate defense against pathogenic infections and are poised to undergo multiple forms of regulated cell death (RCD) upon infections or toxic stimuli, leading to multiple organ injury. Triptolide, an active compound isolated from Tripterygium wilfordii Hook F., possesses various pharmacological activities including anti-tumor and anti-inflammatory effects, but its applications have been hampered by toxic adverse effects. It remains unknown whether and how triptolide induces different forms of RCD in macrophages. In this study, we showed that triptolide exhibited significant cytotoxicity on cultured macrophages in vitro, which was associated with multiple forms of lytic cell death that could not be fully suppressed by any one specific inhibitor for a single form of RCD. Consistently, triptolide induced the simultaneous activation of pyroptotic, apoptotic and necroptotic hallmarks, which was accompanied by the co-localization of ASC specks respectively with RIPK3 or caspase-8 as well as their interaction with each other, indicating the formation of PANoptosome and thus the induction of PANoptosis. Triptolide-induced PANoptosis was associated with mitochondrial dysfunction and ROS production. PANoptosis was also induced by triptolide in mouse peritoneal macrophages in vivo. Furthermore, triptolide caused kidney and liver injury, which was associated with systemic inflammatory responses and the activation of hallmarks for PANoptosis in vivo. Collectively, our data reveal that triptolide induces PANoptosis in macrophages in vitro and exhibits nephrotoxicity and hepatotoxicity associated with induction of PANoptosis in vivo, suggesting a new avenue to alleviate triptolide's toxicity by harnessing PANoptosis.


Asunto(s)
Diterpenos , Fenantrenos , Ratones , Animales , Apoptosis , Macrófagos/metabolismo , Diterpenos/efectos adversos , Diterpenos/metabolismo , Fenantrenos/toxicidad , Fenantrenos/metabolismo , Compuestos Epoxi/toxicidad , Compuestos Epoxi/metabolismo
18.
Anal Chem ; 95(8): 4190-4195, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36794939

RESUMEN

The combination of acoustically levitated droplets, mid-IR laser evaporation, and subsequent post-ionization by secondary electrospray ionization was applied for monitoring the enzymatic digestion of various proteins. Acoustically levitated droplets are an ideal, wall-free model reactor, readily allowing compartmentalized microfluidic trypsin digestions. Time-resolved interrogation of the droplets yielded real-time information on the progress of the reaction and thus provided insights into reaction kinetics. After 30 min of digestion in the acoustic levitator, the obtained protein sequence coverages were identical to the reference overnight digestions. Importantly, our results clearly demonstrate that the applied experimental setup can be used for the real-time investigation of chemical reactions. Furthermore, the described methodology only uses a fraction of the typically applied amounts of solvent, analyte, and trypsin. Thus, the results exemplify the use of acoustic levitation as a green analytical chemistry alternative to the currently used batch reactions.


Asunto(s)
Acústica , Proteínas , Proteolisis , Tripsina/química , Espectrometría de Masas , Proteínas/análisis
19.
BMC Med ; 21(1): 398, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864216

RESUMEN

BACKGROUND: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a newly defined condition encompassing hepatic steatosis and metabolic dysfunction. However, the relationship between MAFLD and multi-system diseases remains unclear, and the time-dependent sequence of these diseases requires further clarification. METHODS: After propensity score matching, 163,303 MAFLD subjects and 163,303 matched subjects were included in the community-based UK Biobank study. The International Classification of Diseases, Tenth Revision (ICD-10), was used to reclassify medical conditions into 490 and 16 specific causes of death. We conducted a disease trajectory analysis to map the key pathways linking MAFLD to various health conditions, providing an overview of their interconnections. RESULTS: Participants aged 59 (51-64) years, predominantly males (62.5%), were included in the study. During the 12.9-year follow-up period, MAFLD participants were found to have a higher risk of 113 medical conditions and eight causes of death, determined through phenome-wide association analysis using Cox regression models. Temporal disease trajectories of MAFLD were established using disease pairing, revealing intermediary diseases such as asthma, diabetes, hypertension, hypothyroid conditions, tobacco abuse, diverticulosis, chronic ischemic heart disease, obesity, benign tumors, and inflammatory arthritis. These trajectories primarily resulted in acute myocardial infarction, disorders of fluid, electrolyte, and acid-base balance, infectious gastroenteritis and colitis, and functional intestinal disorders. Regarding death trajectories of MAFLD, malignant neoplasms, cardiovascular diseases, and respiratory system deaths were the main causes, and organ failure, infective disease, and internal environment disorder were the primary end-stage conditions. Disease trajectory analysis based on the level of genetic susceptibility to MAFLD yielded consistent results. CONCLUSIONS: Individuals with MAFLD have a risk of a number of different medical conditions and causes of death. Notably, these diseases and potential causes of death constitute many pathways that may be promising targets for preventing general health decline in patients with MAFLD.


Asunto(s)
Artritis , Asma , Enfermedad del Hígado Graso no Alcohólico , Masculino , Humanos , Femenino , Bancos de Muestras Biológicas , Reino Unido/epidemiología
20.
Immunity ; 41(2): 283-95, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25088770

RESUMEN

Group 2 innate lymphoid cells (ILC2s) release interleukin-13 (IL-13) during protective immunity to helminth infection and detrimentally during allergy and asthma. Using two mouse models to deplete ILC2s in vivo, we demonstrate that T helper 2 (Th2) cell responses are impaired in the absence of ILC2s. We show that MHCII-expressing ILC2s interact with antigen-specific T cells to instigate a dialog in which IL-2 production from T cells promotes ILC2 proliferation and IL-13 production. Deletion of MHCII renders IL-13-expressing ILC2s incapable of efficiently inducing Nippostrongylus brasiliensis expulsion. Thus, during transition to adaptive T cell-mediated immunity, the ILC2 and T cell crosstalk contributes to their mutual maintenance, expansion and cytokine production. This interaction appears to augment dendritic-cell-induced T cell activation and identifies a previously unappreciated pathway in the regulation of type-2 immunity.


Asunto(s)
Comunicación Celular/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Nippostrongylus/inmunología , Células Th2/inmunología , Animales , Presentación de Antígeno/inmunología , Diferenciación Celular/inmunología , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase II/genética , Inmunidad Celular , Inmunidad Innata , Interleucina-13/biosíntesis , Interleucina-13/metabolismo , Interleucina-2/biosíntesis , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA