Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(9): 1961-1975.e5, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34525337

RESUMEN

Nucleic acids are powerful triggers of innate immunity and can adopt the Z-conformation, an unusual left-handed double helix. Here, we studied the biological function(s) of Z-RNA recognition by the adenosine deaminase ADAR1, mutations in which cause Aicardi-Goutières syndrome. Adar1mZα/mZα mice, bearing two point mutations in the Z-nucleic acid binding (Zα) domain that abolish Z-RNA binding, displayed spontaneous induction of type I interferons (IFNs) in multiple organs, including in the lung, where both stromal and hematopoietic cells showed IFN-stimulated gene (ISG) induction. Lung neutrophils expressed ISGs induced by the transcription factor IRF3, indicating an initiating role for neutrophils in this IFN response. The IFN response in Adar1mZα/mZα mice required the adaptor MAVS, implicating cytosolic RNA sensing. Adenosine-to-inosine changes were enriched in transposable elements and revealed a specific requirement of ADAR1's Zα domain in editing of a subset of RNAs. Thus, endogenous RNAs in Z-conformation have immunostimulatory potential curtailed by ADAR1, with relevance to autoinflammatory disease in humans.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Adenosina Desaminasa/genética , Interferón Tipo I/inmunología , ARN Bicatenario/genética , Adenosina/genética , Adenosina/metabolismo , Animales , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Inosina/genética , Inosina/metabolismo , Interferón Tipo I/genética , Ratones , Mutación , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/inmunología , Edición de ARN/genética , ARN Bicatenario/metabolismo
2.
Nature ; 616(7957): 563-573, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046094

RESUMEN

B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response.


Asunto(s)
Retrovirus Endógenos , Inmunoterapia , Neoplasias Pulmonares , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/terapia , Adenocarcinoma del Pulmón/virología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/virología , Modelos Animales de Enfermedad , Retrovirus Endógenos/inmunología , Inmunoterapia/métodos , Pulmón/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/virología , Microambiente Tumoral , Linfocitos B/inmunología , Estudios de Cohortes , Anticuerpos/inmunología , Anticuerpos/uso terapéutico
3.
Nature ; 607(7920): 776-783, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35859176

RESUMEN

Mutations of the ADAR1 gene encoding an RNA deaminase cause severe diseases associated with chronic activation of type I interferon (IFN) responses, including Aicardi-Goutières syndrome and bilateral striatal necrosis1-3. The IFN-inducible p150 isoform of ADAR1 contains a Zα domain that recognizes RNA with an alternative left-handed double-helix structure, termed Z-RNA4,5. Hemizygous ADAR1 mutations in the Zα domain cause type I IFN-mediated pathologies in humans2,3 and mice6-8; however, it remains unclear how the interaction of ADAR1 with Z-RNA prevents IFN activation. Here we show that Z-DNA-binding protein 1 (ZBP1), the only other protein in mammals known to harbour Zα domains9, promotes type I IFN activation and fatal pathology in mice with impaired ADAR1 function. ZBP1 deficiency or mutation of its Zα domains reduced the expression of IFN-stimulated genes and largely prevented early postnatal lethality in mice with hemizygous expression of ADAR1 with mutated Zα domain (Adar1mZα/- mice). Adar1mZα/- mice showed upregulation and impaired editing of endogenous retroelement-derived complementary RNA reads, which represent a likely source of Z-RNAs activating ZBP1. Notably, ZBP1 promoted IFN activation and severe pathology in Adar1mZα/- mice in a manner independent of RIPK1, RIPK3, MLKL-mediated necroptosis and caspase-8-dependent apoptosis, suggesting a novel mechanism of action. Thus, ADAR1 prevents endogenous Z-RNA-dependent activation of pathogenic type I IFN responses by ZBP1, suggesting that ZBP1 could contribute to type I interferonopathies caused by ADAR1 mutations.


Asunto(s)
Adenosina Desaminasa , Interferón Tipo I , Proteínas de Unión al ARN , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Animales , Apoptosis , Caspasa 8/metabolismo , Interferón Tipo I/antagonistas & inhibidores , Interferón Tipo I/inmunología , Ratones , Mutación , Necroptosis , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
4.
Nature ; 580(7803): 391-395, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32296175

RESUMEN

The biological function of Z-DNA and Z-RNA, nucleic acid structures with a left-handed double helix, is poorly understood1-3. Z-DNA-binding protein 1 (ZBP1; also known as DAI or DLM-1) is a nucleic acid sensor that contains two Zα domains that bind Z-DNA4,5 and Z-RNA6-8. ZBP1 mediates host defence against some viruses6,7,9-14 by sensing viral nucleic acids6,7,10. RIPK1 deficiency, or mutation of its RIP homotypic interaction motif (RHIM), triggers ZBP1-dependent necroptosis and inflammation in mice15,16. However, the mechanisms that induce ZBP1 activation in the absence of viral infection remain unknown. Here we show that Zα-dependent sensing of endogenous ligands induces ZBP1-mediated perinatal lethality in mice expressing RIPK1 with mutated RHIM (Ripk1mR/mR), skin inflammation in mice with epidermis-specific RIPK1 deficiency (RIPK1E-KO) and colitis in mice with intestinal epithelial-specific FADD deficiency (FADDIEC-KO). Consistently, functional Zα domains were required for ZBP1-induced necroptosis in fibroblasts that were treated with caspase inhibitors or express RIPK1 with mutated RHIM. Inhibition of nuclear export triggered the Zα-dependent activation of RIPK3 in the nucleus resulting in cell death, which suggests that ZBP1 may recognize nuclear Z-form nucleic acids. We found that ZBP1 constitutively bound cellular double-stranded RNA in a Zα-dependent manner. Complementary reads derived from endogenous retroelements were detected in epidermal RNA, which suggests that double-stranded RNA derived from these retroelements may act as a Zα-domain ligand that triggers the activation of ZBP1. Collectively, our results provide evidence that the sensing of endogenous Z-form nucleic acids by ZBP1 triggers RIPK3-dependent necroptosis and inflammation, which could underlie the development of chronic inflammatory conditions-particularly in individuals with mutations in RIPK1 and CASP817-20.


Asunto(s)
Inflamación/metabolismo , Necroptosis , Proteínas de Unión al ARN/metabolismo , Transporte Activo de Núcleo Celular , Animales , Caspasa 8/metabolismo , Femenino , Inflamación/genética , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ácidos Nucleicos/metabolismo , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Enfermedades de la Piel/genética , Enfermedades de la Piel/metabolismo , Enfermedades de la Piel/patología
5.
Nature ; 580(7804): E10, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32322058

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38691660

RESUMEN

SNPs in the FAM13A locus are amongst the most commonly reported risk alleles associated with chronic obstructive pulmonary disease (COPD) and other respiratory diseases, however the physiological role of FAM13A is unclear. In humans, two major protein isoforms are expressed at the FAM13A locus: 'long' and 'short', but their functions remain unknown, partly due to a lack of isoform conservation in mice. We performed in-depth characterisation of organotypic primary human airway epithelial cell subsets and show that multiciliated cells predominantly express the FAM13A long isoform containing a putative N-terminal Rho GTPase activating protein (RhoGAP) domain. Using purified proteins, we directly demonstrate RhoGAP activity of this domain. In Xenopus laevis, which conserve the long isoform, Fam13a-deficiency impaired cilia-dependent embryo motility. In human primary epithelial cells, long isoform deficiency did not affect multiciliogenesis but reduced cilia co-ordination in mucociliary transport assays. This is the first demonstration that FAM13A isoforms are differentially expressed within the airway epithelium, with implications for the assessment and interpretation of SNP effects on FAM13A expression levels. We also show that the long FAM13A isoform co-ordinates cilia-driven movement, suggesting that FAM13A risk alleles may affect susceptibility to respiratory diseases through deficiencies in mucociliary clearance. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

7.
PLoS Pathog ; 18(8): e1010349, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36007063

RESUMEN

SARS-CoV-2 is a betacoronavirus and the etiological agent of COVID-19, a devastating infectious disease. Due to its far-reaching effect on human health, there is an urgent and growing need to understand the viral molecular biology of SARS-CoV-2 and its interaction with the host cell. SARS-CoV-2 encodes 9 predicted accessory proteins, which are presumed to be dispensable for in vitro replication, most likely having a role in modulating the host cell environment to aid viral replication. Here we show that the ORF6 accessory protein interacts with cellular Rae1 to inhibit cellular protein production by blocking mRNA export. We utilised cell fractionation coupled with mRNAseq to explore which cellular mRNA species are affected by ORF6 expression and show that ORF6 can inhibit the export of many mRNA including those encoding antiviral factors such as IRF1 and RIG-I. We also show that export of these mRNA is blocked in the context of SARS-CoV-2 infection. Together, our studies identify a novel mechanism by which SARS-CoV-2 can manipulate the host cell environment to supress antiviral responses, providing further understanding to the replication strategies of a virus that has caused an unprecedented global health crisis.


Asunto(s)
COVID-19 , SARS-CoV-2 , Proteínas Virales/metabolismo , Antivirales , COVID-19/genética , Humanos , Inmunidad Innata , Proteínas Asociadas a Matriz Nuclear , Proteínas de Transporte Nucleocitoplasmático/genética , ARN Mensajero/genética
8.
Nature ; 554(7690): 56-61, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364871

RESUMEN

The planarian Schmidtea mediterranea is an important model for stem cell research and regeneration, but adequate genome resources for this species have been lacking. Here we report a highly contiguous genome assembly of S. mediterranea, using long-read sequencing and a de novo assembler (MARVEL) enhanced for low-complexity reads. The S. mediterranea genome is highly polymorphic and repetitive, and harbours a novel class of giant retroelements. Furthermore, the genome assembly lacks a number of highly conserved genes, including critical components of the mitotic spindle assembly checkpoint, but planarians maintain checkpoint function. Our genome assembly provides a key model system resource that will be useful for studying regeneration and the evolutionary plasticity of core cell biological mechanisms.


Asunto(s)
Evolución Molecular , Genoma/genética , Planarias/citología , Planarias/genética , Animales , Proteínas de Ciclo Celular/deficiencia , Genómica , Puntos de Control de la Fase M del Ciclo Celular/genética , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Proteínas Mad2/deficiencia , Planarias/fisiología , Regeneración/genética , Reproducción Asexuada/genética , Retroelementos/genética
9.
Nature ; 554(7690): 50-55, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364872

RESUMEN

Salamanders serve as important tetrapod models for developmental, regeneration and evolutionary studies. An extensive molecular toolkit makes the Mexican axolotl (Ambystoma mexicanum) a key representative salamander for molecular investigations. Here we report the sequencing and assembly of the 32-gigabase-pair axolotl genome using an approach that combined long-read sequencing, optical mapping and development of a new genome assembler (MARVEL). We observed a size expansion of introns and intergenic regions, largely attributable to multiplication of long terminal repeat retroelements. We provide evidence that intron size in developmental genes is under constraint and that species-restricted genes may contribute to limb regeneration. The axolotl genome assembly does not contain the essential developmental gene Pax3. However, mutation of the axolotl Pax3 paralogue Pax7 resulted in an axolotl phenotype that was similar to those seen in Pax3-/- and Pax7-/- mutant mice. The axolotl genome provides a rich biological resource for developmental and evolutionary studies.


Asunto(s)
Ambystoma mexicanum/genética , Evolución Molecular , Genoma/genética , Genómica , Animales , ADN Intergénico/genética , Genes Esenciales/genética , Proteínas de Homeodominio/genética , Intrones/genética , Masculino , Ratones , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX7/genética , Picea/genética , Pinus/genética , Regeneración/genética , Retroelementos/genética , Secuencias Repetidas Terminales/genética
10.
Nature ; 559(7712): E2, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29795340

RESUMEN

In the originally published version of this Article, the sequenced axolotl strain (the homozygous white mutant) was denoted as 'D/D' rather than 'd/d' in Fig. 1a and the accompanying legend, the main text and the Methods section. The original Article has been corrected online.

11.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33419925

RESUMEN

Affinity maturation depends on how efficiently germinal centers (GCs) positively select B cells in the light zone (LZ). Positively selected GC B cells recirculate between LZs and dark zones (DZs) and ultimately differentiate into plasmablasts (PBs) and memory B cells (MBCs). Current understanding of the GC reaction presumes that cMyc-dependent positive selection of LZ B cells is a competitive affinity-dependent process; however, this cannot explain the production of GC-derived lower-affinity MBCs or retention of GC B cells with varied affinities. Here, by combining single-cell/bulk RNA sequencing and flow cytometry, we identified and characterized temporally and functionally distinct positively selected cMyc+ GC B cell subpopulations. cMyc+ LZ B cell subpopulations enriched with either higher- or lower-affinity cells diverged soon after permissive positive selection. The former subpopulation contained PB precursors, whereas the latter comprised less proliferative MBC precursors and future DZ entrants. The overall affinity of future DZ entrants was enhanced in the LZ through preferential proliferation of higher-affinity cells. Concurrently, lower-affinity cells were retained in GCs and protected from apoptosis. These findings redefine positive selection as a dynamic process generating three distinct B cell fates and elucidate how positive selection ensures clonal diversity for broad protection.


Asunto(s)
Linfocitos B/metabolismo , Centro Germinal/inmunología , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Selección Clonal Mediada por Antígenos , Femenino , Humanos , Ganglios Linfáticos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Plasmáticas , Receptores de Antígenos de Linfocitos B/genética
12.
PLoS Genet ; 16(6): e1008471, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32525879

RESUMEN

Viruses and their hosts are locked in an evolutionary race where resistance to infection is acquired by the hosts while viruses develop strategies to circumvent these host defenses. Forming one arm of the host defense armory are cell autonomous restriction factors like Fv1. Originally described as protecting laboratory mice from infection by murine leukemia virus (MLV), Fv1s from some wild mice have also been found to restrict non-MLV retroviruses, suggesting an important role in the protection against viruses in nature. We surveyed the Fv1 genes of wild mice trapped in Thailand and characterized their restriction activities against a panel of retroviruses. An extra copy of the Fv1 gene, named Fv7, was found on chromosome 6 of three closely related Asian species of mice: Mus caroli, M. cervicolor, and M. cookii. The presence of flanking repeats suggested it arose by LINE-mediated retroduplication within their most recent common ancestor. A high degree of natural variation was observed in both Fv1 and Fv7 and, on top of positive selection at certain residues, insertions and deletions were present that changed the length of the reading frames. These genes exhibited a range of restriction phenotypes, with activities directed against gamma-, spuma-, and lentiviruses. It seems likely, at least in the case of M. caroli, that the observed gene duplication may expand the breadth of restriction beyond the capacity of Fv1 alone and that one or more such viruses have recently driven or continue to drive the evolution of the Fv1 and Fv7 genes.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Ratones/genética , Proteínas/genética , Infecciones por Retroviridae/genética , Animales , Resistencia a la Enfermedad/genética , Ratones/virología , Retroviridae/patogenicidad , Infecciones por Retroviridae/inmunología , Infecciones por Retroviridae/virología
13.
Mol Biol Evol ; 38(6): 2468-2474, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33560369

RESUMEN

The genomes of inbred mice harbor around 50 endogenous murine leukemia virus (MLV) loci, although the specific complement varies greatly between strains. The Gv1 locus is known to control the transcription of endogenous MLVs and to be the dominant determinant of cell-surface presentation of MLV envelope, the GIX antigen. Here, we identify a single Krüppel-associated box zinc finger protein (ZFP) gene, Zfp998, as Gv1 and show it to be necessary and sufficient to determine the GIX+ phenotype. By long-read sequencing of bacterial artificial chromosome clones from 129 mice, the prototypic GIX+ strain, we reveal the source of sufficiency and deficiency as splice-acceptor variations and highlight the varying origins of the chromosomal region encompassing Gv1. Zfp998 becomes the second identified ZFP gene responsible for epigenetic suppression of endogenous MLVs in mice and further highlights the prominent role of this gene family in control of endogenous retroviruses.


Asunto(s)
Retrovirus Endógenos/fisiología , Interacciones Huésped-Patógeno/genética , Virus de la Leucemia Murina/fisiología , Animales , Interacciones Huésped-Patógeno/inmunología , Ratones
14.
Genome Res ; 29(10): 1578-1590, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31537638

RESUMEN

Dysregulated endogenous retroelements (EREs) are increasingly implicated in the initiation, progression, and immune surveillance of human cancer. However, incomplete knowledge of ERE activity limits mechanistic studies. By using pan-cancer de novo transcript assembly, we uncover the extent and complexity of ERE transcription. The current assembly doubled the number of previously annotated transcripts overlapping with long-terminal repeat (LTR) elements, several thousand of which were expressed specifically in one or a few related cancer types. Exemplified in melanoma, LTR-overlapping transcripts were highly predictable, disease prognostic, and closely linked with molecularly defined subtypes. They further showed the potential to affect disease-relevant genes, as well as produce novel cancer-specific antigenic peptides. This extended view of LTR elements provides the framework for functional validation of affected genes and targets for cancer immunotherapy.


Asunto(s)
Neoplasias/genética , Retroelementos/genética , Transcriptoma/genética , Perfilación de la Expresión Génica , Humanos , Inmunoterapia , Neoplasias/inmunología , Neoplasias/terapia , Filogenia , Retroelementos/inmunología , Secuencias Repetidas Terminales/genética , Transcriptoma/inmunología
15.
PLoS Pathog ; 16(5): e1008605, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32453763

RESUMEN

As obligate parasites, viruses highjack, modify and repurpose the cellular machinery for their own replication. Viral proteins have, therefore, evolved biological functions, such as signalling potential, that alter host cell physiology in ways that are still incompletely understood. Retroviral envelope glycoproteins interact with several host proteins, extracellularly with their cellular receptor and anti-envelope antibodies, and intracellularly with proteins of the cytoskeleton or sorting, endocytosis and recirculation pathways. Here, we examined the impact of endogenous retroviral envelope glycoprotein expression and interaction with host proteins, particularly antibodies, on the cell, independently of retroviral infection. We found that in the commonly used C57BL/6 substrains of mice, where murine leukaemia virus (MLV) envelope glycoproteins are expressed by several endogenous MLV proviruses, the highest expressed MLV envelope glycoprotein is under the control of an immune-responsive cellular promoter, thus linking MLV envelope glycoprotein expression with immune activation. We further showed that antibody ligation induces extensive internalisation from the plasma membrane into endocytic compartments of MLV envelope glycoproteins, which are not normally subject to constitutive endocytosis. Importantly, antibody binding and internalisation of MLV envelope glycoproteins initiates signalling cascades in envelope-expressing murine lymphocytic cell lines, leading to cellular activation. Similar effects were observed by MLV envelope glycoprotein ligation by its cellular receptor mCAT-1, and by overexpression in human lymphocytic cells, where it required an intact tyrosine-based YXXΦ motif in the envelope glycoprotein cytoplasmic tail. Together, these results suggest that signalling potential is a general property of retroviral envelope glycoproteins and, therefore, a target for intervention.


Asunto(s)
Anticuerpos Antivirales/inmunología , Canales de Calcio/inmunología , Membrana Celular/inmunología , Endocitosis/inmunología , Virus de la Leucemia Murina/inmunología , Canales Catiónicos TRPV/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Humanos , Ratones , Ratones Endogámicos BALB C
16.
Blood ; 133(10): 1108-1118, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30700420

RESUMEN

Best known for presenting antigenic peptides to CD4+ T cells, major histocompatibility complex class II (MHC II) also transmits or may modify intracellular signals. Here, we show that MHC II cell-autonomously regulates the balance between self-renewal and differentiation in B-cell precursors, as well as in malignant B cells. Initiation of MHC II expression early during bone marrow B-cell development limited the occupancy of cycling compartments by promoting differentiation, thus regulating the numerical output of B cells. MHC II deficiency preserved stem cell characteristics in developing pro-B cells in vivo, and ectopic MHC II expression accelerated hematopoietic stem cell differentiation in vitro. Moreover, MHC II expression restrained growth of murine B-cell leukemia cell lines in vitro and in vivo, independently of CD4+ T-cell surveillance. Our results highlight an important cell-intrinsic contribution of MHC II expression to establishing the differentiated B-cell phenotype.


Asunto(s)
Linfocitos B/inmunología , Diferenciación Celular , Antígenos de Histocompatibilidad Clase II/inmunología , Animales , Presentación de Antígeno , Médula Ósea , Células de la Médula Ósea/citología , Linfocitos T CD4-Positivos/inmunología , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Progresión de la Enfermedad , Femenino , Antígenos de Histocompatibilidad Clase II/genética , Proteínas de Homeodominio/genética , Leucemia de Células B/inmunología , Activación de Linfocitos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL
17.
Proc Natl Acad Sci U S A ; 115(40): 10130-10135, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30224488

RESUMEN

Both exogenous and endogenous retroviruses have long been studied in mice, and some of the earliest mouse studies focused on the heritability of genetic factors influencing permissivity and resistance to infection. The prototypic retroviral restriction factor, Fv1, is now understood to exhibit a degree of control across multiple retroviral genera and is highly diverse within Mus To better understand the age and evolutionary history of Fv1, a comprehensive survey of the Muroidea was conducted, allowing the progenitor integration to be dated to ∼45 million years. Intact coding potential is visible beyond Mus, and sequence analysis reveals strong signatures of positive selection also within field mice, ApodemusFv1's survival for such a period implies a recurring and shifting retroviral burden imparting the necessary selective pressures-an influence likely also common to analogous factors. Regions of Fv1 adapt cooperatively, highlighting its preference for repeated structures and suggesting that this functionally constrained aspect of the retroviral capsid lattice presents a common target in the evolution of intrinsic immunity.


Asunto(s)
Evolución Molecular , Proteínas/genética , Animales , Ratones , Murinae
19.
J Virol ; 92(1)2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29046457

RESUMEN

Endogenous retroviruses (ERVs) occupy extensive regions of the human genome. Although many of these retroviral elements have lost their ability to replicate, those whose insertion took place more recently, such as the HML-2 group of HERV-K elements, still retain intact open reading frames and the capacity to produce certain viral RNA and/or proteins. Transcription of these ERVs is, however, tightly regulated by dedicated epigenetic control mechanisms. Nonetheless, it has been reported that some pathological states, such as viral infections and certain cancers, coincide with ERV expression, suggesting that transcriptional reawakening is possible. HML-2 elements are reportedly induced during HIV-1 infection, but the conserved nature of these elements has, until recently, rendered their expression profiling problematic. Here, we provide comprehensive HERV-K HML-2 expression profiles specific for productively HIV-1-infected primary human CD4+ T cells. We combined enrichment of HIV-1 infected cells using a reporter virus expressing a surface reporter for gentle and efficient purification with long-read single-molecule real-time sequencing. We show that three HML-2 proviruses-6q25.1, 8q24.3, and 19q13.42-are upregulated on average between 3- and 5-fold in HIV-1-infected CD4+ T cells. One provirus, HML-2 12q24.33, in contrast, was repressed in the presence of active HIV replication. In conclusion, this report identifies the HERV-K HML-2 loci whose expression profiles differ upon HIV-1 infection in primary human CD4+ T cells. These data will help pave the way for further studies on the influence of endogenous retroviruses on HIV-1 replication.IMPORTANCE Endogenous retroviruses inhabit big portions of our genome. Moreover, although they are mainly inert, some of the evolutionarily younger members maintain the ability to express both RNA and proteins. We have developed an approach using long-read single-molecule real-time (SMRT) sequencing that produces long reads that allow us to obtain detailed and accurate HERV-K HML-2 expression profiles. We applied this approach to study HERV-K expression in the presence or absence of productive HIV-1 infection of primary human CD4+ T cells. In addition to using SMRT sequencing, our strategy also includes the magnetic selection of the infected cells so that levels of background expression due to uninfected cells are kept at a minimum. The results presented here provide a blueprint for in-depth studies of the interactions of the authentic upregulated HERV-K HML-2 elements and HIV-1.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Retrovirus Endógenos/genética , Regulación Viral de la Expresión Génica , VIH-1/fisiología , Provirus/genética , Proteínas Virales/genética , Células Cultivadas , Retrovirus Endógenos/fisiología , Genoma Humano , VIH-1/genética , Humanos , Provirus/fisiología , ARN Viral/metabolismo , Proteínas del Envoltorio Viral/metabolismo
20.
J Immunol ; 197(9): 3628-3638, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27647833

RESUMEN

Elucidation of the immune requirements for control or elimination of retroviral infection remains an important aim. We studied the induction of adaptive immunity to neonatal infection with a murine retrovirus, under conditions leading to immunological tolerance. We found that the absence of either maternal or offspring adaptive immunity permitted efficient vertical transmission of the retrovirus. Maternal immunodeficiency allowed the retrovirus to induce central Th cell tolerance in the infected offspring. In turn, this compromised the offspring's ability to mount a protective Th cell-dependent B cell response. However, in contrast to T cells, offspring B cells were not centrally tolerized and retained their ability to respond to the infection when provided with T cell help. Thus, escape of retrovirus-specific B cells from deletional tolerance offers the opportunity to induce protective retroviral immunity by restoration of retrovirus-specific T cell help, suggesting similar T cell immunotherapies for persistent viral infections.


Asunto(s)
Traslado Adoptivo , Linfocitos B/inmunología , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Virus de la Leucemia Murina/inmunología , Leucemia Experimental/prevención & control , Infecciones por Retroviridae/prevención & control , Linfocitos T/inmunología , Infecciones Tumorales por Virus/prevención & control , Animales , Animales Recién Nacidos , Linfocitos B/trasplante , Linfocitos B/virología , Células Cultivadas , Tolerancia Central , Femenino , Leucemia Experimental/inmunología , Masculino , Exposición Materna/efectos adversos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Infecciones por Retroviridae/inmunología , Infecciones por Retroviridae/transmisión , Linfocitos T/trasplante , Linfocitos T/virología , Infecciones Tumorales por Virus/inmunología , Infecciones Tumorales por Virus/transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA