Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 19(10): e1011748, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37871123

RESUMEN

Acquired stress resistance (ASR) enables organisms to prepare for environmental changes that occur after an initial stressor. However, the genetic basis for ASR and how the underlying network evolved remain poorly understood. In this study, we discovered that a short phosphate starvation induces oxidative stress response (OSR) genes in the pathogenic yeast C. glabrata and protects it against a severe H2O2 stress; the same treatment, however, provides little benefit in the low pathogenic-potential relative, S. cerevisiae. This ASR involves the same transcription factors (TFs) as the OSR, but with different combinatorial logics. We show that Target-of-Rapamycin Complex 1 (TORC1) is differentially inhibited by phosphate starvation in the two species and contributes to the ASR via its proximal effector, Sch9. Therefore, evolution of the phosphate starvation-induced ASR involves the rewiring of TORC1's response to phosphate limitation and the repurposing of TF-target gene networks for the OSR using new regulatory logics.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Peróxido de Hidrógeno , Fosfatos , Regulación Fúngica de la Expresión Génica
2.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958815

RESUMEN

Growth and development of the Ceratopteris hermaphroditic gametophytes are dependent on cell proliferation in the marginal meristem, which when destroyed will regenerate at a new location on the body margin. We established a laser ablation method to destroy a single initial cell in the meristem. Ablation caused the cessation of cell proliferation accompanied by the disappearance of the expression of an auxin synthesis gene (CrTAA2) and a cell proliferation marker gene (CrWOXB). New meristem regeneration occurred within a predictable distance from the original two days post-ablation, signified by cell proliferation and the expression of CrTAA2. Treatment with the naturally occurring auxin indole-3-acetic acid (IAA), synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D), or the transport inhibitor naphthylphthalamic acid (NPA) altered positioning of the original marginal meristem toward the apex of the gametophyte. IAA altered positioning of the regenerated meristem after damaging the original meristem. A model of auxin involvement in the positioning of the marginal meristem in Ceratopteris is presented to encompass these results.


Asunto(s)
Células Germinativas de las Plantas , Meristema , Meristema/genética , Células Germinativas de las Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Células Germinativas/metabolismo
3.
BMC Plant Biol ; 22(1): 210, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35462532

RESUMEN

BACKGROUND: Plants have the lifelong ability to generate new organs due to the persistent functioning of stem cells. In seed plants, groups of stem cells are housed in the shoot apical meristem (SAM), root apical meristem (RAM), and vascular cambium (VC). In ferns, a single shoot stem cell, the apical cell, is located in the SAM, whereas each root initiates from a single shoot-derived root initial. WUSCHEL-RELATED HOMEOBOX (WOX) family transcription factors play important roles to maintain stem-cell identity. WOX genes are grouped phylogenetically into three clades. The T3WOX/modern clade has expanded greatly in angiosperms, with members functioning in multiple meristems and complex developmental programs. The model fern Ceratopteris richardii has only one well-supported T3WOX/modern WOX gene, CrWUL. Its orthologs in Arabidopsis, AtWUS, AtWOX5, and AtWOX4, function in the SAM, RAM, and VC, respectively. Identifying the function of CrWUL will provide insights on the progenitor function and the diversification of the modern WOX genes in seed plants. RESULTS: To investigate the role of CrWUL in the fern, we examined the expression and function of CrWUL and found it expresses during early root development and in vasculature but not in the SAM. Knockdown of CrWUL by RNAi produced plants with fewer roots and fewer phloem cells. When expressed in Arabidopsis cambium, CrWUL was able to complement AtWOX4 function in an atwox4 mutant, suggesting that the WOX function in VC is conserved between ferns and angiosperms. Additionally, the proposed progenitor of T3WOX genes from Selaginella kraussiana is expressed in the vasculature but not in the shoot apical meristem. In contrast to the sporophyte, the expression of CrWUL in the gametophyte exhibits a more general expression pattern and when knocked down, offered little discernable phenotypes. CONCLUSIONS: The results presented here support the occurrence of co-option of the T3WOX/modern clade gene from the gametophyte to function in vasculature and root development in the sporophyte. The function in vasculature is likely to have existed in the progenitor of lycophyte T3WOX/modern clade genes and this function predates its SAM function found in many seed plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Helechos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Helechos/genética , Regulación de la Expresión Génica de las Plantas , Genes Homeobox , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Meristema/metabolismo , Plantas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
BMC Plant Biol ; 19(1): 416, 2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31601197

RESUMEN

BACKGROUND: Post-embryonic growth of land plants originates from meristems. Genetic networks in meristems maintain the stem cells and direct acquisition of cell fates. WUSCHEL-RELATED HOMEOBOX (WOX) transcription factors involved in meristem networks have only been functionally characterized in two evolutionarily distant taxa, mosses and seed plants. This report characterizes a WOX gene in a fern, which is located phylogenetically between the two taxa. RESULTS: CrWOXB transcripts were detected in proliferating tissues, including gametophyte and sporophyte meristems of Ceratopteris richardii. In addition, CrWOXB is expressed in archegonia but not the antheridia of gametophytes. Suppression of CrWOXB expression in wild-type RN3 plants by RNAi produced abnormal morphologies of gametophytes and sporophytes. The gametophytes of RNAi lines produced fewer cells, and fewer female gametes compared to wild-type. In the sporophyte generation, RNAi lines produced fewer leaves, pinnae, roots and lateral roots compared to wild-type sporophytes. CONCLUSIONS: Our results suggest that CrWOXB functions to promote cell divisions and organ development in the gametophyte and sporophyte generations, respectively. CrWOXB is the first intermediate-clade WOX gene shown to function in both generations in land plants.


Asunto(s)
Expresión Génica , Genes Homeobox , Genes de Plantas , Pteridaceae/genética , Células Germinativas de las Plantas/metabolismo , Meristema/genética , Brotes de la Planta/genética , Reproducción/genética
5.
Plant J ; 90(1): 122-132, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28078730

RESUMEN

Asexual reproduction is widespread in land plants, including ferns where 10% of all species are obligate asexuals. In these ferns, apogamous sporophytes are generated directly from gametophytes, bypassing fertilization. In the model fern Ceratopteris richardii, a sexual species, apogamy can be induced by culture on high sugar media. BABY BOOM (BBM) genes in angiosperms are known to promote somatic embryogenesis, which like apogamy produce sporophytes without fertilization. Here, a Brassica napus BBM (BnBBM) was used to investigate genetic similarity between apogamy in ferns and somatic embryogenesis in angiosperms. A C. richardii transcriptome was constructed from which one AINTEGUMENTA-LIKE unigene, CrANT, was identified. Whole mount in situ hybridization showed that CrANT is expressed in sperm and fertilized eggs. Phylogenetic analysis grouped CrANT with other non-seed-plant ANT genes to the euANT clade but in a branch separate from BBM genes. Overexpression of CrANT or BnBBM promotes apogamy in C. richardii without sugar supplement. CrANT knockdown gametophytes responded weakly to sugar for apogamy promotion. Theses results suggest some genetic conservation between apogamy and somatic embryogenesis and that such asexual reproduction may be ancient.


Asunto(s)
Helechos/genética , Helechos/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Células Germinativas de las Plantas/metabolismo , Proteínas de Plantas/genética , Transcriptoma/genética
6.
bioRxiv ; 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37781605

RESUMEN

Acquired stress resistance (ASR) enables organisms to prepare for environmental changes that occur after an initial stressor. However, the genetic basis for ASR and how the underlying network evolved remain poorly understood. In this study, we discovered that a short phosphate starvation induces oxidative stress response (OSR) genes in the pathogenic yeast C. glabrata and protects it against a severe H2O2 stress; the same treatment, however, provides little benefit in the low pathogenic-potential relative, S. cerevisiae. This ASR involves the same transcription factors (TFs) as the OSR, but with different combinatorial logics. We show that Target-of-Rapamycin Complex 1 (TORC1) is differentially inhibited by phosphate starvation in the two species and contributes to the ASR via its proximal effector, Sch9. Therefore, evolution of the phosphate starvation-induced ASR involves the rewiring of TORC1's response to phosphate limitation and the repurposing of TF-target gene networks for the OSR using new regulatory logics.

7.
Plant Sci ; 335: 111812, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37532002

RESUMEN

Land plant sexual reproduction involves the transition of cells from somatic to reproductive identity during post-embryonic development. In Arabidopsis, the leucine-rich repeat receptor-like kinase EXCESS MICROSPOROCYTES1 (EXS/EMS1) restricts the number of sporogenous cells during the transition from diploid tissue to haploid spore production by promoting the formation of the tapetum cell layer within the anther. Although all land plants studied contain EMS1 genes, its function is unknown beyond a few angiosperms. In the model fern Ceratopteris (Ceratopteris richardii), we discovered an EMS1 homolog (CrEMS1) that functions to suppress formation of reproductive structures on vegetative leaves of the fern sporophyte, a role not found in angiosperms. Suppression of CrEMS1 by RNAi did not affect sporogenesis on reproductive leaves but did affect antheridium production of the fern gametophyte. Expression patterns of CrEMS1 across developmental stages suggest threshold levels of CrEMS1 control the specification of reproductive organs during both generations of the fern. Additional EMS1 homologs present in the fern genome suggest a dynamic role of EMS1 receptors in the evolution of reproductive development in vascular plants.


Asunto(s)
Helechos , Helechos/genética , Helechos/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA