RESUMEN
Chronic liver disease is a major public health burden worldwide1. Although different aetiologies and mechanisms of liver injury exist, progression of chronic liver disease follows a common pathway of liver inflammation, injury and fibrosis2. Here we examined the association between clonal haematopoiesis of indeterminate potential (CHIP) and chronic liver disease in 214,563 individuals from 4 independent cohorts with whole-exome sequencing data (Framingham Heart Study, Atherosclerosis Risk in Communities Study, UK Biobank and Mass General Brigham Biobank). CHIP was associated with an increased risk of prevalent and incident chronic liver disease (odds ratio = 2.01, 95% confidence interval (95% CI) [1.46, 2.79]; P < 0.001). Individuals with CHIP were more likely to demonstrate liver inflammation and fibrosis detectable by magnetic resonance imaging compared to those without CHIP (odds ratio = 1.74, 95% CI [1.16, 2.60]; P = 0.007). To assess potential causality, Mendelian randomization analyses showed that genetic predisposition to CHIP was associated with a greater risk of chronic liver disease (odds ratio = 2.37, 95% CI [1.57, 3.6]; P < 0.001). In a dietary model of non-alcoholic steatohepatitis, mice transplanted with Tet2-deficient haematopoietic cells demonstrated more severe liver inflammation and fibrosis. These effects were mediated by the NLRP3 inflammasome and increased levels of expression of downstream inflammatory cytokines in Tet2-deficient macrophages. In summary, clonal haematopoiesis is associated with an elevated risk of liver inflammation and chronic liver disease progression through an aberrant inflammatory response.
Asunto(s)
Hematopoyesis Clonal , Susceptibilidad a Enfermedades , Hepatitis , Cirrosis Hepática , Animales , Ratones , Hematopoyesis Clonal/genética , Hepatitis/genética , Inflamación/genética , Cirrosis Hepática/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Oportunidad Relativa , Progresión de la EnfermedadRESUMEN
BACKGROUND: Consistent evidence suggests diabetes-protective effects of dietary fiber intake. However, the underlying mechanisms, particularly the role of gut microbiota and host circulating metabolites, are not fully understood. We aimed to investigate gut microbiota and circulating metabolites associated with dietary fiber intake and their relationships with type 2 diabetes (T2D). METHODS: This study included up to 11â 394 participants from the HCHS/SOL (Hispanic Community Health Study/Study of Latinos). Diet was assessed with two 24-hour dietary recalls at baseline. We examined associations of dietary fiber intake with gut microbiome measured by shotgun metagenomics (350 species/85 genera and 1958 enzymes; n=2992 at visit 2), serum metabolome measured by untargeted metabolomics (624 metabolites; n=6198 at baseline), and associations between fiber-related gut bacteria and metabolites (n=804 at visit 2). We examined prospective associations of serum microbial-associated metabolites (n=3579 at baseline) with incident T2D over 6 years. RESULTS: We identified multiple bacterial genera, species, and related enzymes associated with fiber intake. Several bacteria (eg, Butyrivibrio, Faecalibacterium) and enzymes involved in fiber degradation (eg, xylanase EC3.2.1.156) were positively associated with fiber intake, inversely associated with prevalent T2D, and favorably associated with T2D-related metabolic traits. We identified 159 metabolites associated with fiber intake, 47 of which were associated with incident T2D. We identified 18 of these 47 metabolites associated with the identified fiber-related bacteria, including several microbial metabolites (eg, indolepropionate and 3-phenylpropionate) inversely associated with the risk of T2D. Both Butyrivibrio and Faecalibacterium were associated with these favorable metabolites. The associations of fiber-related bacteria, especially Faecalibacterium and Butyrivibrio, with T2D were attenuated after further adjustment for these microbial metabolites. CONCLUSIONS: Among United States Hispanics/Latinos, dietary fiber intake was associated with favorable profiles of gut microbiota and circulating metabolites for T2D. These findings advance our understanding of the role of gut microbiota and microbial metabolites in the relationship between diet and T2D.
Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/microbiología , Dieta , Bacterias , Fibras de la DietaRESUMEN
BACKGROUND: Dietary acculturation, or adoption of dominant culture diet by migrant groups, influences human health. We aimed to examine dietary acculturation and its relationships with cardiovascular disease (CVD), gut microbiota, and blood metabolites among US Hispanic and Latino adults. METHODS: In the HCHS/SOL (Hispanic Community Health Study/Study of Latinos), US exposure was defined by years in the United States (50 states and Washington, DC) and US nativity. A dietary acculturation pattern was derived from 14 172 participants with two 24-hour dietary recalls at baseline (2008-2011) using least absolute shrinkage and selection operator regression, with food groups as predictors of US exposure. We evaluated associations of dietary acculturation with incident CVD across ≈7 years of follow-up (n=211/14 172 cases/total) and gut microbiota (n=2349; visit 2, 2014 to 2017). Serum metabolites associated with both dietary acculturation-related gut microbiota (n=694) and incident CVD (n=108/5256 cases/total) were used as proxy measures to assess the association of diet-related gut microbiome with incident CVD. RESULTS: We identified an empirical US-oriented dietary acculturation score that increased with US exposure. Higher dietary acculturation score was associated with higher risk of incident CVD (hazard ratio per SD, 1.33 [95% CI, 1.13-1.57]), adjusted for sociodemographic, lifestyle, and clinical factors. Sixty-nine microbial species (17 enriched from diverse species, 52 depleted mainly from fiber-utilizing Clostridia and Prevotella species) were associated with dietary acculturation, driven by lower intakes of whole grains, beans, and fruits and higher intakes of refined grains. Twenty-five metabolites, involved predominantly in fatty acid and glycerophospholipid metabolism (eg, branched-chain 14:0 dicarboxylic acid** and glycerophosphoethanolamine), were associated with both diet acculturation-related gut microbiota and incident CVD. Proxy association analysis based on these metabolites suggested a positive relationship between diet acculturation-related microbiome and risk of CVD (r=0.70, P<0.001). CONCLUSIONS: Among US Hispanic and Latino adults, greater dietary acculturation was associated with elevated CVD risk, possibly through alterations in gut microbiota and related metabolites. Diet and microbiota-targeted interventions may offer opportunities to mitigate CVD burdens of dietary acculturation.
Asunto(s)
Aculturación , Enfermedades Cardiovasculares , Dieta , Microbioma Gastrointestinal , Hispánicos o Latinos , Humanos , Masculino , Femenino , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/etnología , Persona de Mediana Edad , Estados Unidos/epidemiología , Adulto , Dieta/efectos adversos , Factores de Riesgo , IncidenciaRESUMEN
While polygenic risk scores (PRSs) enable early identification of genetic risk for chronic obstructive pulmonary disease (COPD), predictive performance is limited when the discovery and target populations are not well matched. Hypothesizing that the biological mechanisms of disease are shared across ancestry groups, we introduce a PrediXcan-derived polygenic transcriptome risk score (PTRS) to improve cross-ethnic portability of risk prediction. We constructed the PTRS using summary statistics from application of PrediXcan on large-scale GWASs of lung function (forced expiratory volume in 1 s [FEV1] and its ratio to forced vital capacity [FEV1/FVC]) in the UK Biobank. We examined prediction performance and cross-ethnic portability of PTRS through smoking-stratified analyses both on 29,381 multi-ethnic participants from TOPMed population/family-based cohorts and on 11,771 multi-ethnic participants from TOPMed COPD-enriched studies. Analyses were carried out for two dichotomous COPD traits (moderate-to-severe and severe COPD) and two quantitative lung function traits (FEV1 and FEV1/FVC). While the proposed PTRS showed weaker associations with disease than PRS for European ancestry, the PTRS showed stronger association with COPD than PRS for African Americans (e.g., odds ratio [OR] = 1.24 [95% confidence interval [CI]: 1.08-1.43] for PTRS versus 1.10 [0.96-1.26] for PRS among heavy smokers with ≥ 40 pack-years of smoking) for moderate-to-severe COPD. Cross-ethnic portability of the PTRS was significantly higher than the PRS (paired t test p < 2.2 × 10-16 with portability gains ranging from 5% to 28%) for both dichotomous COPD traits and across all smoking strata. Our study demonstrates the value of PTRS for improved cross-ethnic portability compared to PRS in predicting COPD risk.
Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Transcriptoma , Humanos , Pulmón , National Heart, Lung, and Blood Institute (U.S.) , Enfermedad Pulmonar Obstructiva Crónica/genética , Factores de Riesgo , Estados Unidos/epidemiologíaRESUMEN
AIMS/HYPOTHESIS: Several studies have reported associations between specific proteins and type 2 diabetes risk in European populations. To better understand the role played by proteins in type 2 diabetes aetiology across diverse populations, we conducted a large proteome-wide association study using genetic instruments across four racial and ethnic groups: African; Asian; Hispanic/Latino; and European. METHODS: Genome and plasma proteome data from the Multi-Ethnic Study of Atherosclerosis (MESA) study involving 182 African, 69 Asian, 284 Hispanic/Latino and 409 European individuals residing in the USA were used to establish protein prediction models by using potentially associated cis- and trans-SNPs. The models were applied to genome-wide association study summary statistics of 250,127 type 2 diabetes cases and 1,222,941 controls from different racial and ethnic populations. RESULTS: We identified three, 44 and one protein associated with type 2 diabetes risk in Asian, European and Hispanic/Latino populations, respectively. Meta-analysis identified 40 proteins associated with type 2 diabetes risk across the populations, including well-established as well as novel proteins not yet implicated in type 2 diabetes development. CONCLUSIONS/INTERPRETATION: Our study improves our understanding of the aetiology of type 2 diabetes in diverse populations. DATA AVAILABILITY: The summary statistics of multi-ethnic type 2 diabetes GWAS of MVP, DIAMANTE, Biobank Japan and other studies are available from The database of Genotypes and Phenotypes (dbGaP) under accession number phs001672.v3.p1. MESA genetic, proteome and covariate data can be accessed through dbGaP under phs000209.v13.p3. All code is available on GitHub ( https://github.com/Arthur1021/MESA-1K-PWAS ).
RESUMEN
RATIONALE: Genetic variation has a substantial contribution to chronic obstructive pulmonary disease (COPD) and lung function measurements. Heritability estimates using genome-wide genotyping data can be biased if analyses do not appropriately account for the nonuniform distribution of genetic effects across the allele frequency and linkage disequilibrium (LD) spectrum. In addition, the contribution of rare variants has been unclear. OBJECTIVES: We sought to assess the heritability of COPD and lung function using whole-genome sequence data from the Trans-Omics for Precision Medicine program. METHODS: Using the genome-based restricted maximum likelihood method, we partitioned the genome into bins based on minor allele frequency and LD scores and estimated heritability of COPD, FEV1% predicted and FEV1/FVC ratio in 11 051 European ancestry and 5853 African-American participants. MEASUREMENTS AND MAIN RESULTS: In European ancestry participants, the estimated heritability of COPD, FEV1% predicted and FEV1/FVC ratio were 35.5%, 55.6% and 32.5%, of which 18.8%, 19.7%, 17.8% were from common variants, and 16.6%, 35.8%, and 14.6% were from rare variants. These estimates had wide confidence intervals, with common variants and some sets of rare variants showing a statistically significant contribution (P-value < 0.05). In African-Americans, common variant heritability was similar to European ancestry participants, but lower sample size precluded calculation of rare variant heritability. CONCLUSIONS: Our study provides updated and unbiased estimates of heritability for COPD and lung function, and suggests an important contribution of rare variants. Larger studies of more diverse ancestry will improve accuracy of these estimates.
Asunto(s)
Predisposición Genética a la Enfermedad , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Polimorfismo de Nucleótido Simple/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Estudio de Asociación del Genoma Completo , FenotipoRESUMEN
Metal-organic frameworks (MOFs) are a new variety of solid crystalline porous functional materials. As an extension of inorganic porous materials, it has made important progress in preparation and application. MOFs are widely used in various fields such as gas adsorption storage, drug delivery, sensing, and biological imaging due to their high specific surface area, porosity, adjustable pore size, abundant active sites, and functional modification by introducing groups. In this paper, the types of MOFs are classified, and the synthesis methods and functional modification mechanisms of MOFs materials are summarized. Finally, the application prospects and challenges of metal-organic framework materials in the biomedical field are discussed, hoping to promote their application in multidisciplinary fields.
RESUMEN
Simultaneously improving the strength and toughness of polymer-inorganic nanocomposites is highly desirable but remains technically challenging. Herein, a simple yet effective pathway to prepare polymer-inorganic nanocomposite films that exhibit excellent mechanical properties due to their unique composition and structure is demonstrated. Specifically, a series of poly(methacrylic acid)x-block-poly(benzyl methacrylate)y diblock copolymer nano-objects with differing dimensions and morphologies is prepared by polymerization-induced self-assembly (PISA) mediated by reversible addition-fragmentation chain transfer polymerization (RAFT). Such copolymer nano-objects and ultrasmall calcium phosphate oligomers (CPOs) are used as dual fillers for the preparation of polymer-inorganic composite films using sodium carboxymethyl cellulose (CMC) as a matrix. Impressively, the strength and toughness of such composite films are substantially reinforced as high as up to 202.5 ± 14.8 MPa and 62.3 ± 7.9 MJ m-3, respectively. Owing to the intimate interaction between the polymer-inorganic interphases at multiple scales, their mechanical performances are superior to most conventional polymer films and other nanocomposite films. This study demonstrates the combination of polymeric fillers and inorganic fillers to reinforce the mechanical properties of the resultant composite films, providing new insights into the design rules for the construction of novel hybrid films with excellent mechanical performances.
RESUMEN
Metal-organic frameworks (MOFs) are excellent precursors for preparing transition metal and nitrogen co-doped carbon catalysts, which have been widely utilized in the field of electrocatalysis since their initial development. However, the original MOFs derived catalysts have been greatly limited in their development and application due to their disadvantages such as metal atom aggregation, structural collapse, and narrow pore channels. Recently, surfactants-assisted MOFs derived catalysts have attracted much attention from researchers due to their advantages such as hierarchical porous structure, increased specific surface area, and many exposed active sites. This review mainly focuses on the synthesis methods of surfactants-assisted MOFs derived catalysts and comprehensively introduces the action of surfactants in MOFs derived materials and the structure-activity relationship between the catalysts and the oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction performance. Apparently, the aims of this review not only introduce the status of surfactants-assisted MOFs derived catalysts in the field of electrocatalysis but also contribute to the rational design and synthesis of MOFs derived catalysts for fuel cells, metal-air cells, and electrolysis of water toward hydrogen production.
RESUMEN
RATIONALE & OBJECTIVE: Biomarkers that enable better identification of persons with chronic kidney disease (CKD) who are at higher risk for disease progression and adverse events are needed. This study sought to identify urine and plasma metabolites associated with progression of kidney disease. STUDY DESIGN: Prospective metabolome-wide association study. SETTING & PARTICIPANTS: Persons with CKD enrolled in the GCKD (German CKD) study with metabolite measurements, with external validation within the ARIC (Atherosclerosis Risk in Communities) Study. EXPOSURES: 1,513 urine and 1,416 plasma metabolites (Metabolon Inc) measured at study entry using untargeted mass spectrometry. OUTCOMES: Main end points were kidney failure (KF) and a composite kidney end point (CKE) of KF, estimated glomerular filtration rate<15mL/min/1.73m2, or a 40% decrease in estimated glomerular filtration rate. Death from any cause was a secondary end point. After a median of 6.5 years of follow-up, 500 persons had experienced KF, 1,083 had experienced the CKE, and 680 had died. ANALYTICAL APPROACH: Time-to-event analyses using multivariable proportional hazard regression models in a discovery-replication design with external validation. RESULTS: 5,088 GCKD study participants were included in analyses of urine metabolites, and 5,144 were included in analyses of plasma metabolites. Among 182 unique metabolites, 30 were significantly associated with KF, 49 with the CKE, and 163 with death. The strongest association with KF was observed for plasma hydroxyasparagine (HR, 1.95; 95% CI, 1.68-2.25). An unnamed metabolite measured in plasma and urine was significantly associated with KF, the CKE, and death. External validation of the identified associations of metabolites with KF or the CKE revealed directional consistency for 88% of observed associations. Selected associations of 18 metabolites with study outcomes have not been previously reported. LIMITATIONS: Use of observational data and semiquantitative metabolite measurements at a single time point. CONCLUSIONS: The observed associations between metabolites and KF, the CKE, or death in persons with CKD confirmed previously reported findings and also revealed several associations not previously described. These findings warrant confirmatory research in other study cohorts. PLAIN-LANGUAGE SUMMARY: Incomplete understanding of the variability of chronic kidney disease (CKD) progression motivated the search for new biomarkers that would help identify people at increased risk. We explored metabolites in plasma and urine for their association with unfavorable kidney outcomes or death in persons with CKD. Metabolomic analyses revealed 182 metabolites significantly associated with CKD progression or death. Many of these associations confirmed previously reported findings or were validated by analysis in an external study population. Our comprehensive screen of the metabolome serves as a valuable foundation for future investigations into biomarkers associated with CKD progression.
Asunto(s)
Biomarcadores , Progresión de la Enfermedad , Insuficiencia Renal Crónica , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Insuficiencia Renal Crónica/orina , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/mortalidad , Biomarcadores/orina , Biomarcadores/sangre , Anciano , Tasa de Filtración Glomerular , Estudios de Cohortes , Insuficiencia Renal/orina , Insuficiencia Renal/sangre , Insuficiencia Renal/mortalidadRESUMEN
Chronic obstructive pulmonary disease (COPD) is associated with age and smoking, but other determinants of the disease are incompletely understood. Clonal hematopoiesis of indeterminate potential (CHIP) is a common, age-related state in which somatic mutations in clonal blood populations induce aberrant inflammatory responses. Patients with CHIP have an elevated risk for cardiovascular disease, but the association of CHIP with COPD remains unclear. We analyzed whole-genome sequencing and whole-exome sequencing data to detect CHIP in 48 835 patients, of whom 8444 had moderate to very severe COPD, from four separate cohorts with COPD phenotyping and smoking history. We measured emphysema in murine models in which Tet2 was deleted in hematopoietic cells. In the COPDGene cohort, individuals with CHIP had risks of moderate-to-severe, severe, or very severe COPD that were 1.6 (adjusted 95% confidence interval [CI], 1.1-2.2) and 2.2 (adjusted 95% CI, 1.5-3.2) times greater than those for noncarriers. These findings were consistently observed in three additional cohorts and meta-analyses of all patients. CHIP was also associated with decreased FEV1% predicted in the COPDGene cohort (mean between-group differences, -5.7%; adjusted 95% CI, -8.8% to -2.6%), a finding replicated in additional cohorts. Smoke exposure was associated with a small but significant increased risk of having CHIP (odds ratio, 1.03 per 10 pack-years; 95% CI, 1.01-1.05 per 10 pack-years) in the meta-analysis of all patients. Inactivation of Tet2 in mouse hematopoietic cells exacerbated the development of emphysema and inflammation in models of cigarette smoke exposure. Somatic mutations in blood cells are associated with the development and severity of COPD, independent of age and cumulative smoke exposure.
Asunto(s)
Hematopoyesis Clonal , Enfermedad Pulmonar Obstructiva Crónica/genética , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Oportunidad Relativa , Enfermedad Pulmonar Obstructiva Crónica/etiología , Factores de Riesgo , Fumar/efectos adversos , Secuenciación del ExomaRESUMEN
INTRODUCTION: There is a lack of biomarkers of clinically important diets, such as the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet. OBJECTIVES: Our study explored serum metabolites associated with adherence to the MIND diet. METHODS: In 3,908 Atherosclerosis Risk in Communities (ARIC) study participants, we calculated a modified MIND diet score based on a 66-item self-reported food frequency questionnaire (FFQ). The modified score did not include berries and olive oil, as these items were not assessed in the FFQ. We used multivariable linear regression models in 2 subgroups of ARIC study participants and meta-analyzed results using fixed effects regression to identify significant metabolites after Bonferroni correction. We also examined associations between these metabolites and food components of the modified MIND diet. C-statistics evaluated the prediction of high modified MIND diet adherence using significant metabolites beyond participant characteristics. RESULTS: Of 360 metabolites analyzed, 27 metabolites (15 positive, 12 negative) were significantly associated with the modified MIND diet score (lipids, n = 13; amino acids, n = 5; xenobiotics, n = 3; cofactors and vitamins, n = 3; carbohydrates n = 2; nucleotide n = 1). The top 4 metabolites that improved the prediction of high dietary adherence to the modified MIND diet were 7-methylxanthine, theobromine, docosahexaenoate (DHA), and 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF). CONCLUSION: Twenty-seven metabolomic markers were correlated with the modified MIND diet. The biomarkers, if further validated, could be useful to objectively assess adherence to the MIND diet.
Asunto(s)
Biomarcadores , Dieta Mediterránea , Humanos , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores/sangre , Enfermedades Neurodegenerativas/sangre , Enfermedades Neurodegenerativas/dietoterapia , Enfoques Dietéticos para Detener la Hipertensión , Metabolómica/métodos , AncianoRESUMEN
BACKGROUND: Adult asthma is complex and incompletely understood. Plasma proteomics is an evolving technique that can both generate biomarkers and provide insights into disease mechanisms. We aimed to identify plasma proteomic signatures of adult asthma. METHODS: Protein abundance in plasma was measured in individuals from the Agricultural Lung Health Study (ALHS) (761 asthma, 1095 non-case) and the Atherosclerosis Risk in Communities study (470 asthma, 10,669 non-case) using the SOMAScan 5K array. Associations with asthma were estimated using covariate adjusted logistic regression and meta-analyzed using inverse-variance weighting. Additionally, in ALHS, we examined phenotypes based on both asthma and seroatopy (asthma with atopy (n = 207), asthma without atopy (n = 554), atopy without asthma (n = 147), compared to neither (n = 948)). RESULTS: Meta-analysis of 4860 proteins identified 115 significantly (FDR<0.05) associated with asthma. Multiple signaling pathways related to airway inflammation and pulmonary injury were enriched (FDR<0.05) among these proteins. A proteomic score generated using machine learning provided predictive value for asthma (AUC = 0.77, 95% CI = 0.75-0.79 in training set; AUC = 0.72, 95% CI = 0.69-0.75 in validation set). Twenty proteins are targeted by approved or investigational drugs for asthma or other conditions, suggesting potential drug repurposing. The combined asthma-atopy phenotype showed significant associations with 20 proteins, including five not identified in the overall asthma analysis. CONCLUSION: This first large-scale proteomics study identified over 100 plasma proteins associated with current asthma in adults. In addition to validating previous associations, we identified many novel proteins that could inform development of diagnostic biomarkers and therapeutic targets in asthma management.
Asunto(s)
Asma , Hipersensibilidad Inmediata , Adulto , Humanos , Proteómica/métodos , Asma/metabolismo , Biomarcadores , Fenotipo , Proteínas Sanguíneas/genéticaRESUMEN
Photosynthesis, converting sustainable solar energy into chemical energy, has emerged as a promising craft to achieve diverse organic transformations due to its mild reaction conditions, sustainability, and high efficiency. The synthesis of sulfonated compounds has drawn significant attention in the pharmaceuticals, agrochemicals, and materials industries due to the unique structure and electronic properties of the sulfonyl groups. Over the past decades, many photocatalytic sulfonylation reactions have been developed. In this review, the recent advances in photocatalyzed sulfonylation have been reviewed since 2020, with a primary focus on discussing reaction design and mechanism.
RESUMEN
BACKGROUND: There is a need to understand the underlying biological mechanisms through which ultra-processed foods negatively affect health. Proteomics offers a valuable tool with which to examine different aspects of ultra-processed foods and their impact on health. OBJECTIVES: The aim of this study was to identify protein biomarkers of usual ultra-processed food consumption and assess their relation to the incidence of coronary heart disease (CHD), chronic kidney disease (CKD), and all-cause mortality risk. METHODS: A total of 9361 participants from the Atherosclerosis Risk in Communities visit 3 (1993-1995) were included. Dietary intake was assessed using a 66-item food-frequency questionnaire and the processing levels were categorized on the basis of the Nova classification. Plasma proteins were detected using an aptamer-based proteomic assay. We used multivariable linear regressions to examine the association between ultra-processed food and proteins, and Cox proportional hazard models to identify associations between ultra-processed food-related proteins and health outcomes. Models extensively controlled for sociodemographic characteristics, health behaviors, and clinical factors. RESULTS: Eight proteins (6 positive, 2 negative) were identified as significantly associated with ultra-processed food consumption. Over a median follow-up of 22 y, there were 1276, 3084, and 5127 cases of CHD, CKD, and death, respectively. Three, 5, and 3 ultra-processed food-related proteins were associated with each outcome, respectively. One protein (ß-glucuronidase) was significantly associated with a higher risk of all 3 outcomes, and 3 proteins (receptor-type tyrosine-protein phosphatase U, C-C motif chemokine 25, and twisted gastrulation protein homolog 1) were associated with a higher risk of 2 outcomes. CONCLUSIONS: We identified a panel of protein biomarkers that were significantly associated with ultra-processed food consumption. These proteins may be considered potential biomarkers for ultra-processed food intake and may elucidate the biological processes through which ultra-processed foods impact health outcomes.
RESUMEN
BACKGROUND: The consumption of artificially sweetened beverages is on the rise. Use of artificial sweeteners has been associated with adverse health outcomes. There is a need to identify novel objective biomarkers of artificially sweetened beverages in order to improve dietary assessment and to provide insight into their metabolic impact. OBJECTIVES: We aimed to identify serum metabolites that are associated with artificially sweetened beverage consumption. METHODS: In the Atherosclerosis Risk in Communities (ARIC) study, consumption of artificially sweetened beverages was assessed using a food frequency questionnaire and fasting serum samples were collected during the first study visit (1987-1989). Participants were categorized as nonusers if they reported almost never consumption of artificially sweetened beverages, moderate users for 1 glass/mo to 6 glasses/wk, and heavy users for ≥1 glasses/d. Untargeted metabolomic profiling was conducted in 2 subgroups (subgroup 1: n = 1866, profiled in 2010; subgroup 2 profiled in 2014: n = 2072), and 360 metabolites were analyzed. In this secondary data analysis, multivariable linear regression models were used, adjusting for demographics, health behaviors, health status, and dietary factors. Analyses were conducted in each subgroup and results meta-analyzed. RESULTS: In a meta-analysis of 3938 generally healthy participants (mean age, 54 y; 60% women; 62% Black participants) from ARIC study visit 1, 11 serum metabolites were significantly associated with artificially sweetened beverage consumption. Heavier consumption of artificially sweetened beverages was associated with higher concentrations of 10 metabolites (saccharin, threonate, erythronate, glycerate, gluconate, mannitol, glucose, tryptophan betaine, trehalose, and N6-acetyllysine) and lower concentrations of glycocholenate sulfate. CONCLUSIONS: Eleven serum metabolites are related to artificially sweetened beverage intake, which consist of known sugar substitutes, processed food additives, glucose-related compounds, and gut microbiome-related metabolites. These findings enhance our knowledge of the metabolic activity of artificial sweeteners and suggests new biomarkers for monitoring intake.
RESUMEN
Fungal keratitis (FK) is an infectious keratopathy can cause serious damage to vision. Its severity is related to the virulence of fungus and response of inflammatory. Rosmarinic acid (RA) extracted from Rosmarinus officinalis exhibits antioxidant, anti-inflammatory and anti-viral properties. The aim of this study was to investigate the effect of RA on macrophage autophagy and its therapeutic effect on FK. In this study, we demonstrated that RA reduced expression of proinflammatory cytokine, lessened the recruitment of inflammatory cells in FK. The relative contents of autophagy markers, such as LC3 and Beclin-1, were significantly up-regulated in RAW 264.7 cells and FK. In addition, RA restored mitochondrial membrane potential (MMP) of macrophage to normal level. RA not only reduced the production of intracellular reactive oxygen species (ROS) but also mitochondria ROS (mtROS) in macrophage. At the same time, RA induced macrophage to M2 phenotype and down-regulated the mRNA expression of IL-6, IL-1ß, TNF-α. All the above effects could be offset by the autophagy inhibitor 3-Methyladenine (3-MA). Besides, RA promote phagocytosis of RAW 264.7 cells and inhibits spore germination, biofilm formation and conidial adherence, suggesting a potential therapeutic role for RA in FK.
Asunto(s)
Aspergilosis , Aspergillus fumigatus , Autofagia , Cinamatos , Depsidos , Infecciones Fúngicas del Ojo , Macrófagos , Especies Reactivas de Oxígeno , Ácido Rosmarínico , Depsidos/farmacología , Animales , Autofagia/efectos de los fármacos , Ratones , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Aspergilosis/metabolismo , Infecciones Fúngicas del Ojo/microbiología , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/microbiología , Cinamatos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Queratitis/microbiología , Queratitis/tratamiento farmacológico , Queratitis/metabolismo , Modelos Animales de Enfermedad , Células RAW 264.7 , Citocinas/metabolismo , Fagocitosis/efectos de los fármacosRESUMEN
Fungal keratitis (FK) is a refractory keratitis caused by excessive inflammation and fungal damage. Excessive inflammation can lead to tissue damage and corneal opacity, resulting in a poor prognosis for FK. Oxymatrine (OMT) is a natural alkaloid, which has rich pharmacological effects, such as antioxidant and anti-inflammation. However, its antifungal activity and the mechanism of action in FK have not been elucidated. This study confirmed that OMT suppressed Aspergillus fumigatus growth, biofilm formation, the integrity of fungal cell and conidial adherence. OMT not only effectively reduced corneal fungal load but also inflammation responses. OMT lessened the recruitment of neutrophils and macrophages in FK. In addition, OMT up-regulated the expression of Nrf2 and down-regulated the expression of IL-18, IL-1ß, caspase-1, NLRP3 and GSDMD. Pre-treatment with Nrf2 inhibitor up-regulated the expression of IL-1ß, IL-18, caspase-1, NLRP3 and GSDMD supressed by OMT. In conclusion, OMT has efficient anti-inflammatory and antifungal effects by suppressing fungal activity and restricting pyroptosis via Nrf2 pathway. OMT is considered as a potential option for the treatment of FK.
Asunto(s)
Aspergilosis , Úlcera de la Córnea , Infecciones Fúngicas del Ojo , Queratitis , Matrinas , Animales , Ratones , Aspergillus fumigatus/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR , Interleucina-18 , Aspergilosis/tratamiento farmacológico , Aspergilosis/metabolismo , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Piroptosis , Factor 2 Relacionado con NF-E2 , Queratitis/microbiología , Inflamación , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Infecciones Fúngicas del Ojo/metabolismo , Caspasa 1/metabolismo , Ratones Endogámicos C57BLRESUMEN
BACKGROUND: Understanding seasonal variations in stroke can help stakeholders identify underlying causes in seasonal trends, and tailor resources appropriately to times of highest needs. We sought to evaluate the seasonal occurrence of stroke and its subtypes. METHODS: We conducted a retrospective cohort study using administrative data from January 1st, 2003, to December 31st, 2017, in Ontario, Canada's most populous province. We evaluated seasonal variations in stroke occurrence by subtype, via age/sex standardized rates and adjusted rate ratios using Poisson regressions. In those with stroke, we evaluated 30-day case fatality risks by season, adjusted for age, sex, stroke type, and comorbid conditions, and then used Cox proportional hazard models to estimate the effect of season on the fatality. The administrative data used in this study were from the Canadian Institute for Health Information's Discharge Abstract Database, the National Ambulatory Care Reporting System Database, the Ontario Registered Persons Database, and the 2006 and 2011 Canada Census and linked administrative databases. RESULTS: During our study period, we observed 394,145 strokes or TIA events, with a decrease in monthly hospitalization/emergency department visits per 100,000 people between January 2003 and December 2017 from 24.22 to 17.43. Compared to the summer, overall stroke occurrence was similar in the spring but slightly lower in the fall (adjusted rate ratio [aRR] 0.97, 95% confidence interval [CI] 0.96-0.98) and winter (aRR 0.94, 95% CI: 0.94-0.95). There were minor variations by stroke subtype. Winter was associated with the highest risk of stroke case fatality compared to the summer (12.4% vs. 11.4%, adjusted hazard ratio 1.10, 95% CI: 1.07-1.13). CONCLUSIONS: We found seasonal variations in stroke occurrence and case fatality, although the absolute differences were small. Further work is needed to better understand how environmental or meteorological factors might affect stroke risk.
RESUMEN
A Gram-stain-negative, aerobic, rod-shaped and halotolerant bacterium, designated as strain ASW11-75T, was isolated from intertidal sediments in Qingdao, PR China, and identified using a polyphasic taxonomic approach. Growth of strain ASW11-75T occurred at 10-45â°C (optimum, 37â°C), pH 6.5-9.0 (optimum, pH 8.0) and 0.5-18.0â% NaCl concentrations (optimum, 2.5â%). Phylogenetic analyses based on 16S rRNA gene sequences and 1179 single-copy orthologous clusters indicated that strain ASW11-75T is affiliated with the genus Marinobacter. Strain ASW11-75T showed highest 16S rRNA gene sequence similarity to 'Marinobacter arenosus' CAU 1620T (98.5â%). The digital DNA-DNA hybridization and average nucleotide identity values between strain ASW11-75T and its closely related strains (Marinobacter salarius R9SW1T, Marinobacter similis A3d10T, 'Marinobacter arenosus' CAU 1620T, Marinobacter sediminum R65T, Marinobacter salinus Hb8T, Marinobacter alexandrii LZ-8T and Marinobacter nauticus ATCC 49840T) were 19.8-24.5â% and 76.6-80.7â%, respectively. The predominant cellular fatty acids were C16â:â0, C18â:â1 ω9c and C16â:â0 N alcohol. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified aminophospholipid and two unidentified lipids. The major isoprenoid quinone was ubiquinone-9. The genomic DNA G+C content was 62.2âmol%. Based on genomic and gene function analysis, strain ASW11-75T had lower protein isoelectric points with higher ratios of acidic residues to basic residues and possessed genes related to ion transport and organic osmoprotectant uptake, implying its potential tolerance to salt. The results of polyphasic characterization indicated strain ASW11-75T represents a novel Marinobacter species, for which the name Marinobacter qingdaonensis sp. nov. with the type strain ASW11-75T is proposed. The type strain is ASW11-75T (=KCTC 82497T=MCCC 1K05587T).