Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 360: 121176, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38759547

RESUMEN

Globally, grazing activities have profound impacts on the structure and function of ecosystems. This study, based on a 20-year MODIS time series dataset, employs remote sensing techniques and the Seasonal-Trend decomposition using Loess (STL) algorithm to quantitatively assess the stability of alpine grassland ecosystems from multiple dimensions, and to reveal the characteristics of grazing activities and environmental conditions on ecosystem stability. The results indicate that only 5.77% of the area remains undisturbed, with most areas experiencing varying degrees of disturbance. Further analysis shows that grazing activities in high vegetation coverage areas are the main source of interference. In areas with concentrated interference, elevation and slope have a positive correlation with resistance stability, but a negative correlation with recovery stability. Precipitation and landscape diversity have positive effects on both resistance stability and recovery stability. Vegetation coverage and grazing intensity have a negative correlation with resistance stability, but a positive correlation with recovery stability. This highlights the complex interactions between human activities, environmental factors, and ecosystem stability. The findings emphasize the need for targeted conservation and management strategies to mitigate disturbances to ecosystems affected by human activities and enhance their stability.


Asunto(s)
Ecosistema , Pradera , Animales , Conservación de los Recursos Naturales , Herbivoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA