Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 36(6): 2176-2200, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38345432

RESUMEN

Phosphorus is indispensable in agricultural production. An increasing food supply requires more efficient use of phosphate due to limited phosphate resources. However, how crops regulate phosphate efficiency remains largely unknown. Here, we identified a major quantitative trait locus, qPE19, that controls 7 low-phosphate (LP)-related traits in soybean (Glycine max) through linkage mapping and genome-wide association studies. We identified the gene responsible for qPE19 as GLYCEROPHOSPHORYL DIESTER PHOSPHODIESTERASE2 (GmGDPD2), and haplotype 5 represents the optimal allele favoring LP tolerance. Overexpression of GmGDPD2 significantly affects hormone signaling and improves root architecture, phosphate efficiency and yield-related traits; conversely, CRISPR/Cas9-edited plants show decreases in these traits. GmMyb73 negatively regulates GmGDPD2 by directly binding to its promoter; thus, GmMyb73 negatively regulates LP tolerance. GmGDPD2 physically interacts with GA 2-oxidase 1 (GmGA2ox1) in the plasma membrane, and overexpressing GmGA2ox1 enhances LP-associated traits, similar to GmGDPD2 overexpression. Analysis of double mutants for GmGDPD2 and GmGA2ox1 demonstrated that GmGDPD2 regulates LP tolerance likely by influencing auxin and gibberellin dose-associated cell division in the root. These results reveal a regulatory module that plays a major role in regulating LP tolerance in soybeans and is expected to be utilized to develop phosphate-efficient varieties to enhance soybean production, particularly in phosphate-deficient soils.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max , Fosfatos , Proteínas de Plantas , Glycine max/genética , Glycine max/metabolismo , Fosfatos/metabolismo , Fosfatos/deficiencia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sitios de Carácter Cuantitativo/genética , Plantas Modificadas Genéticamente , Estudio de Asociación del Genoma Completo
2.
Plant Physiol ; 194(3): 1527-1544, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-37882637

RESUMEN

Phosphorus (P) plays a pivotal role in plant growth and development. Low P stress can greatly hamper plant growth. Here, we identified a QTL (named QPH-9-1), which is associated with P efficiency across multiple environments through linkage analysis and genome-wide association study. Furthermore, we successfully cloned the underlying soybean (Glycine max) gene GmRR1 (a soybean type-B Response Regulator 1) that encodes a type-B response regulator protein. Knockout of GmRR1 resulted in a substantial increase in plant height, biomass, P uptake efficiency, and yield-related traits due to the modification of root structure. In contrast, overexpression of GmRR1 in plants resulted in a decrease in these phenotypes. Further analysis revealed that knockout of GmRR1 substantially increased the levels of auxin and ethylene in roots, thereby promoting root hair formation and growth by promoting the formation of root hair primordium and lengthening the root apical meristem. Yeast two-hybrid, bimolecular fluorescence complementation, and dual-luciferase assays demonstrated an interaction between GmRR1 and Histidine-containing Phosphotransmitter protein 1. Expression analysis suggested that these proteins coparticipated in response to low P stress. Analysis of genomic sequences showed that GmRR1 underwent a selection during soybean domestication. Taken together, this study provides further insights into how plants respond to low P stress by modifying root architecture through phytohormone pathways.


Asunto(s)
Glycine max , Raíces de Plantas , Raíces de Plantas/metabolismo , Glycine max/genética , Fósforo/metabolismo , Estudio de Asociación del Genoma Completo , Meristema/metabolismo
3.
Mol Genet Genomics ; 299(1): 54, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758218

RESUMEN

Soybean [Glycine max (L.) Merr.] is an important legume crop worldwide, which provides abundant plant protein and oil for human beings. Soybean mosaic virus (SMV) can cause serious damage to the yield and quality of soybean, but it is difficult to control SMV with chemicals, breeding SMV-resistant varieties has become the most effective way to control the disease. Therefore, it is important to identify SMV resistance genes from soybean resources and apply them to soybean breeding. In this study, the disease rates (DRs) of 219 soybean accessions to SMV strain SC7 in two environments were investigated. A high-density NJAU 355 K SoySNP array was used for genome-wide association study (GWAS) of DR. A 274 kb region on chromosome 15 (1,110,567 bp to 1,384,173 bp) was repeatedly detected in two environments. Six new significant single nucleotide polymorphisms (SNPs) on chromosome 15 were identified. Four of these six SNPs were located within two candidate genes, Glyma.15G015700 and Glyma.15G015800. The elite haplotype Glyma.15G015700Hap I with low DR exhibited strong resistance to SC7. The expression of Glyma.15G015700 in the SMV-resistant accession increased significantly after inoculation with SC7. Furthermore, most of the proteins predicted to interact with Glyma.15G015700 are heat shock proteins, which have been shown to be related to disease resistance. In summary, new SMV resistance loci and a new candidate gene, Glyma.15G015700, were identified and might be utilized in further soybean disease resistance breeding.


Asunto(s)
Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Glycine max , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Potyvirus , Glycine max/genética , Glycine max/virología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Potyvirus/patogenicidad , Potyvirus/genética , Genes de Plantas/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Fitomejoramiento/métodos , Haplotipos , Sitios de Carácter Cuantitativo/genética
4.
Theor Appl Genet ; 137(5): 96, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589730

RESUMEN

KEY MESSAGE: A total of 416 InDels and 112 SNPs were significantly associated with soybean photosynthesis-related traits. GmIWS1 and GmCDC48 might be related to chlorophyll fluorescence and gas-exchange parameters, respectively. Photosynthesis is one of the main factors determining crop yield. A better understanding of the genetic architecture for photosynthesis is of great significance for soybean yield improvement. Our previous studies identified 5,410,112 single nucleotide polymorphisms (SNPs) from the resequencing data of 219 natural soybean accessions. Here, we identified 634,106 insertions and deletions (InDels) from these 219 accessions and used these InDel variations to perform principal component and linkage disequilibrium analysis of this population. The genome-wide association study (GWAS) were conducted on six chlorophyll fluorescence parameters (chlorophyll content, light energy absorbed per reaction center, quantum yield for electron transport, probability that a trapped exciton moves an electron into the electron transport chain beyond primary quinone acceptor, maximum quantum yield of photosystem II primary photochemistry in the dark-adapted state, performance index on absorption basis) and four gas-exchange parameters (intercellular carbon dioxide concentration, stomatal conductance, net photosynthesis rate, transpiration rate) and revealed 416 significant InDels and 112 significant SNPs. Based on GWAS results, GmIWS1 (encoding a transcription elongation factor) and GmCDC48 (encoding a cell division cycle protein) with the highest expression in the mapping region were determined as the candidate genes responsible for chlorophyll fluorescence and gas-exchange parameters, respectively. Further identification of favorable haplotypes with higher photosynthesis, seed weight and seed yield were carried out for GmIWS1 and GmCDC48. Overall, this study revealed the natural variations and candidate genes underlying the photosynthesis-related traits based on abundant phenotypic and genetic data, providing valuable insights into the genetic mechanisms controlling photosynthesis and yield in soybean.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Glycine max/genética , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Fotosíntesis/genética , Clorofila/metabolismo
5.
Ophthalmic Physiol Opt ; 44(5): 854-866, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761017

RESUMEN

PURPOSE: To be able to walk safely up or down a staircase, we must be able to judge the configuration and slope of the staircase and our viewing position. Adding markings to the stairs might help form correct perceptions of the staircase geometry. In this study, we examined how visual judgements about staircase configuration are affected by different marking patterns. METHODS: Fifteen normally sighted young participants viewed computer-generated images of staircases as seen from the top landing of the stairs. Marking patterns included contrasting baseboard, transverse edge-stripes, longitudinal side-stripes, longitudinal stripes, diamond patterns, longitudinal stripes extended to landing and diamond patterns extended to landing. For comparison, we included the no-marking condition as a control. We tested several contrast levels of marking patterns (3.2%-50%), pitch lines of the staircases (shallow/medium/steep) and viewing positions (left/centre/right). The effect of the overall shape cue of the staircase on participants' performance was also evaluated. We measured participants' accuracies in judging whether the staircase was shallow, medium or steep, and whether the viewing position was located to the left, centre or right. RESULTS: Transverse edge-stripes markings yielded fewer underestimations of slope (9% [transverse] vs. 18% [others]) when compared with other markers. The presence of an overall shape cue helped both slope (67% [presence] vs. 51% [absence]) and viewing position judgements (79% [presence] vs. 62% [absence]). When the overall shape cue was present, only the transverse edge-stripes markings yielded a significant improvement in performance (compared with no-marking condition). When the cue was absent, performance was significantly better with markings with high and moderate contrasts. CONCLUSIONS: Adding marking patterns such as high-contrast transverse stripes to stairs may help enhance the visibility of the stairs and judgements of staircase geometry. This might be particularly useful for people with visual impairment or normally sighted individuals under compromised environmental conditions.


Asunto(s)
Sensibilidad de Contraste , Agudeza Visual , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Sensibilidad de Contraste/fisiología , Agudeza Visual/fisiología , Señales (Psicología) , Estimulación Luminosa/métodos , Caminata/fisiología
6.
New Phytol ; 238(4): 1671-1684, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36811193

RESUMEN

Soybean (Glycine max) is a major source of protein and edible oil world-wide and is cultivated in a wide range of latitudes. However, it is extremely sensitive to photoperiod, which influences flowering time, maturity, and yield, and severely limits soybean latitude adaptation. In this study, a genome-wide association study (GWAS) identified a novel locus in accessions harboring the E1 allele, called Time of flowering 8 (Tof8), which promotes flowering and enhances adaptation to high latitude in cultivated soybean. Gene functional analyses showed that Tof8 is an ortholog of Arabidopsis FKF1. We identified two FKF1 homologs in the soybean genome. Both FKF1 homologs are genetically dependent on E1 by binding to E1 promoter to activate E1 transcription, thus repressing FLOWERING LOCUS T 2a (FT2a) and FT5a transcription, which modulate flowering and maturity through the E1 pathway. We also demonstrate that the natural allele FKF1bH3 facilitated adaptation of soybean to high-latitude environments and was selected during domestication and improvement, leading to its rapid expansion in cultivated soybean. These findings provide novel insights into the roles of FKF1 in controlling flowering time and maturity in soybean and offer new means to fine-tune adaptation to high latitudes and increase grain yield.


Asunto(s)
Glycine max , Proteínas de Plantas , Aclimatación , Adaptación Fisiológica , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Fotoperiodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/metabolismo
7.
New Phytol ; 240(6): 2436-2454, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37840365

RESUMEN

Seed size and weight are important factors that influence soybean yield. Combining the weighted gene co-expression network analysis (WGCNA) of 45 soybean accessions and gene dynamic changes in seeds at seven developmental stages, we identified candidate genes that may control the seed size/weight. Among these, a PLATZ-type regulator overlapping with 10 seed weight QTLs was further investigated. This zinc-finger transcriptional regulator, named as GmPLATZ, is required for the promotion of seed size and weight in soybean. The GmPLATZ may exert its functions through direct binding to the promoters and activation of the expression of cyclin genes and GmGA20OX for cell proliferation. Overexpression of the GmGA20OX enhanced seed size/weight in soybean. We further found that the GmPLATZ binds to a 32-bp sequence containing a core palindromic element AATGCGCATT. Spacing of the flanking sequences beyond the core element facilitated GmPLATZ binding. An elite haplotype Hap3 was also identified to have higher promoter activity and correlated with higher gene expression and higher seed weight. Orthologues of the GmPLATZ from rice and Arabidopsis play similar roles in seeds. Our study reveals a novel module of GmPLATZ-GmGA20OX/cyclins in regulating seed size and weight and provides valuable targets for breeding of crops with desirable agronomic traits.


Asunto(s)
Glycine max , Transcriptoma , Glycine max/genética , Transcriptoma/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo , Semillas/genética
8.
Plant Physiol ; 190(1): 480-499, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35640995

RESUMEN

Photoperiod-sensitive plants such as soybean (Glycine max) often face threats from herbivorous insects throughout their whole growth period and especially during flowering; however, little is known about the relationship between plant flowering and insect resistance. Here, we used gene editing, multiple omics, genetic diversity and evolutionary analyses to confirm that the calcium-dependent protein kinase GmCDPK38 plays a dual role in coordinating flowering time regulation and insect resistance of soybean. Haplotype 2 (Hap2)-containing soybeans flowered later and were more resistant to the common cutworm (Spodoptera litura Fabricius) than those of Hap3. gmcdpk38 mutants with Hap3 knocked out exhibited similar flowering and resistance phenotypes as Hap2. Knocking out GmCDPK38 altered numerous flowering- and resistance-related phosphorylated proteins, genes, and metabolites. For example, the S-adenosylmethionine synthase GmSAMS1 was post-translationally upregulated in the gmcdpk38 mutants. GmCDPK38 has abundant genetic diversity in wild soybeans and was likely selected during soybean domestication. We found that Hap2 was mostly distributed at low latitudes and had a higher frequency in cultivars than in wild soybeans, while Hap3 was widely selected at high latitudes. Overall, our results elucidated that the two distinct traits (flowering time and insect resistance) are mediated by GmCDPK38.


Asunto(s)
Calcio , Glycine max , Calcio/metabolismo , Domesticación , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Fotoperiodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/fisiología
9.
Plant Cell Environ ; 46(2): 592-606, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36419232

RESUMEN

Phosphorus (P) deficiency seriously affects plant growth and development and ultimately limits the quality and yield of crops. Here, a new P efficiency-related major quantitative trait locus gene, GmEIL4 (encoding an ethylene-insensitive 3-like 1 protein), was cloned at qP2, which was identified by linkage analysis and genome-wide association study across four environments. Overexpressing GmEIL4 significantly improved the P uptake efficiency by increasing the number, length and surface area of lateral roots of hairy roots in transgenic soybeans, while interfering with GmEIL4 resulted in poor root phenotypic characteristics compared with the control plants under low P conditions. Interestingly, we found that GmEIL4 interacted with EIN3-binding F box protein 1 (GmEBF1), which may regulate the root response to low P stress. We conclude that the expression of GmEIL4 was induced by low-P stress and that overexpressing GmEIL4 improved P accumulation by regulating root elongation and architecture. Analysis of allele variation of GmEIL4 in 894 soybean accessions suggested that GmEIL4 is undergoing artificial selection during soybean evolution, which will benefit soybean production. Together, this study further elucidates how plants respond to low P stress by modifying root structure and provides insight into the great potential of GmEIL4 in crop P-efficient breeding.


Asunto(s)
Glycine max , Raíces de Plantas , Estudio de Asociación del Genoma Completo , Fósforo/metabolismo , Raíces de Plantas/metabolismo , Sitios de Carácter Cuantitativo/genética , Glycine max/metabolismo , Proteínas de Plantas/metabolismo
10.
J Exp Bot ; 74(8): 2692-2706, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36728590

RESUMEN

Soybean mosaic virus (SMV) severely damages soybean [Glycine max (L.) Merr.] yield and seed quality. Moreover, the underlying genetic determinants of resistance to SMV remain largely unknown. Here, we performed a genome-wide association study (GWAS) of SMV resistance in a panel of 219 diverse soybean accessions across four environments and identified a new resistance-related gene, GmMLRK1, at the major resistance locus Rsv4 on chromosome 2. GmMLRK1 encodes a malectin-like receptor kinase (RK) that was induced earlier and to a greater degree in leaves of the SMV-resistant cultivar Kefeng No. 1 than in those of the susceptible cultivar Nannong 1138-2 after inoculation. We demonstrated that soybean plants overexpressing GmMLRK1 show broad-spectrum resistance to both strains SC7 and SC3 on the basis of reduced viral accumulation, increased reactive oxygen species production, and local cell death associated with the hypersensitive response. In contrast, GmMLRK1 knockout mutants were more susceptible to both pathotypes. Haplotype analysis revealed the presence of five haplotypes (H1-H5) within the soybean population, and only H1 provided SMV resistance, which was independent of its tightly linked SMV resistance gene RNase-H at the same locus. These results report a novel gene that adds new understanding of SMV resistance and can be used for breeding resistant soybean accessions.


Asunto(s)
Glycine max , Potyvirus , Glycine max/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Potyvirus/genética , Enfermedades de las Plantas/genética
11.
Theor Appl Genet ; 136(1): 17, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36670242

RESUMEN

KEY MESSAGE: Five loci related to soybean protein and amino acid contents were colocated by performing linkage mapping and GWAS. The haplotype analysis showed that Glyma.08G109100 may be useful to improve the soybean seed composition. Soybean (Glycine max (L.) Merr.) seeds are good protein sources. Although genetic variation is abundant, natural variation in seed amino acids and their derived traits is lacking across soybean accessions. Here, we determined the contents of protein and 17 amino acids, obtained 36 derived traits based on the protein and total amino acid contents, and derived 34 traits based on seven amino acid family groups. Furthermore, we performed a linkage analysis of the contents of 17 amino acids and 73 amino acid-derived traits based on the recombinant inbred line (RIL)-derived Kefeng No. 1 × Nannong 1138-2. Six hundred thirty-nine quantitative trait loci (QTLs) were identified, explaining 6.07-39.00% of the phenotypic variation. Among these loci, five were detected in diverse soybean accessions using a genome-wide association study. A network analysis revealed that some loci that were significantly associated with multiple amino acids were tightly linked on chromosome 8 based on linkage disequilibrium values, which also further confirmed the results of the correlation analysis among amino acid traits. Through a combination of a genome-wide association study, linkage analysis, qRT-PCR, and genomic polymorphism comparison, Glyma.08G109100 on chromosome 8, which may affect amino acid contents, was selected. The haplotype analysis showed that Hap-T of Glyma.08G109100 may be useful to improve the contents of protein and 16 amino acids in soybean. This study provides new insights into the genetic basis of the amino acid composition in soybean seeds and may facilitate marker-based breeding of soybean with improved nutritional value.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Glycine max/metabolismo , Aminoácidos/metabolismo , Fitomejoramiento , Fenotipo , Semillas/química , Polimorfismo de Nucleótido Simple
12.
J Integr Plant Biol ; 65(4): 1026-1040, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36349957

RESUMEN

Increasing plant photosynthetic capacity is a promising approach to boost yields, but it is particularly challenging in C3 crops, such as soybean (Glycine max (L.) Merr.). Here, we identified GmFtsH25, encoding a member of the filamentation temperature-sensitive protein H protease family, as a major gene involved in soybean photosynthesis, using linkage mapping and a genome-wide association study. Overexpressing GmFtsH25 resulted in more grana thylakoid stacks in chloroplasts and increased photosynthetic efficiency and starch content, while knocking out GmFtsH25 produced the opposite phenotypes. GmFtsH25 interacted with photosystem I light harvesting complex 2 (GmLHCa2), and this interaction may contribute to the observed enhanced photosynthesis. GmFtsH25 overexpression lines had superior yield traits, such as yield per plant, compared to the wild type and knockout lines. Additionally, we identified an elite haplotype of GmFtsH25, generated by natural mutations, which appears to have been selected during soybean domestication. Our study sheds light on the molecular mechanism by which GmFtsH25 modulates photosynthesis and provides a promising strategy for improving the yields of soybean and other crops.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Glycine max/genética , Glycine max/metabolismo , Fotosíntesis/genética , Semillas/genética , Productos Agrícolas/genética
13.
Curr Issues Mol Biol ; 44(7): 3194-3207, 2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35877445

RESUMEN

Phytophthora root rot (PRR) is a destructive disease of soybeans (Glycine max (L.) Merr) caused by Phytophthora sojae (P. sojae). The most effective way to prevent the disease is growing resistant or tolerant varieties. Partial resistance provides a more durable resistance against the pathogen compared to complete resistance. Wild soybean (Glycine soja Sieb. & Zucc.) seems to be an extraordinarily important gene pool for soybean improvement due to its high level of genetic variation. In this study, 242 wild soybean germplasms originating from different regions of Heilongjiang province were used to identify resistance genes to P. sojae race 1 using a genome-wide association study (GWAS). A total of nine significant SNPs were detected, repeatedly associated with P. sojae resistance and located on chromosomes 1, 10, 12, 15, 17, 19 and 20. Among them, seven favorable allelic variations associated with P. sojae resistance were evaluated by a t-test. Eight candidate genes were predicted to explore the mechanistic hypotheses of partial resistance, including Glysoja.19G051583, which encodes an LRR receptor-like serine/threonine protein kinase protein, Glysoja.19G051581, which encodes a receptor-like cytosolic serine/threonine protein kinase protein. These findings will provide additional insights into the genetic architecture of P. sojae resistance in a large sample of wild soybeans and P. sojae-resistant breeding through marker-assisted selection.

14.
Mol Genet Genomics ; 297(3): 843-858, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35441900

RESUMEN

Phosphorus (P) deficiency is one of the major limitations for soybean production. Moreover, it has been well reported P and other mineral elements function interdependently or antagonistically to control nutrients homeostasis in plants. Thus, it is urgently needed to understand the genetic mechanism of the accumulation of mineral elements in response to low-P stress. In this study, to identify single nucleotide polymorphisms (SNPs) and candidate genes controlling the accumulation of mineral elements suffering low-P stress in seedling stage of soybean plants, we measured concentrations of mineral elements, including P, Zn, Fe, Mn, Mg and Ca, in shoots of 211 soybean accessions under normal phosphorus (+P) and low phosphorus (-P) conditions in two hydroponic experiments. And genome-wide association study (GWAS) using high density NJAU 355K SoySNP array and concentrations of five of these mineral elements except P was performed. A total of 36 SNPs distributed on 13 chromosomes were identified to be significantly associated with low-P tolerance, and nine SNPs on chromosome 10 formed a SNP cluster. Meanwhile, the candidate gene GmFeB1 was found to serve as a negative regulator element involved in soybean P metabolism and the haplotype1 (Hap1) of GmFeB1 showed significantly higher shoot Fe concentration under -P condition than that of Hap2. In summary, we uncover 36 SNPs significantly associated with shoot mineral elements concentrations under different P conditions and a soybean low-P related gene GmFeB1, which will provide additional genetic information for soybean low-P tolerance and new gene resources for P-efficient soybean varieties breeding.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Minerales , Fósforo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Glycine max/genética
15.
Planta ; 255(3): 55, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35106662

RESUMEN

MAIN CONCLUSION: A soybean E3 ubiquitin ligase, GmRNF1a, may affect pod dehiscence and seed development through MADS family genes. These results would be useful for the study of soybean pod and seed development. Pod dehiscence is one of the critical causes of yield loss in cultivated soybeans, and it is of great significance to understand the molecular mechanisms underlying pod dehiscence in soybeans. In this study, we identified a new RING family member of the E3 ubiquitin ligase, GmRNF1a, which was observed to interact with the MADS-box protein GmAGL1 to regulate siliques dehiscence. Tissue-specific gene expression analysis revealed that GmRNF1a was mainly expressed in flowers and pods in soybean. The subcellular localization assay showed the nuclear and cytoplasmic localization of GmRNF1a. In addition, it was found that GmRNF1a exhibits higher promoter activity in soybean hairy roots as well as in Arabidopsis leaves, flowers, and siliques. Heterologous expression of GmRNF1a in Arabidopsis showed that the transgenic Arabidopsis siliques had a faster maturation rate and cracked earlier than the wild-type plants. The functional and nucleotide diversity analysis suggests that GmRNF1a might play an important role in pod maturation and dehiscence and has been strongly selected for during soybean domestication.


Asunto(s)
Arabidopsis , Glycine max , Arabidopsis/genética , Arabidopsis/metabolismo , Expresión Génica Ectópica , Semillas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
16.
New Phytol ; 235(2): 502-517, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35396723

RESUMEN

Seed yield, determined mainly by seed numbers and seed weight, is the primary target of soybean breeding. Identifying the genes underlying yield-related traits is of great significance. Through joint linkage mapping and a genome-wide association study for 100-seed weight, we cloned GmGA3ox1, a gene encoding gibberellin 3ß-hydroxylase, which is the key enzyme in the gibberellin synthesis pathway. Genome resequencing identified a beneficial GmGA3ox1 haplotype contributing to high seed weight, which was further confirmed by soybean transformants. CRISPR/Cas9-generated gmga3ox1 mutants showed lower seed weight, but promoted seed yield by increasing seed numbers. The gmga3ox1 mutants reduced gibberellin biosynthesis while enhancing photosynthesis. Knockout of GmGA3ox1 resulted in the upregulation of numerous photosynthesis-related genes, particularly the GmRCA family encoding ribulose-1,5-bispho-sphate carboxylase-oxygenase (Rubisco) activases. The basic leucine zipper transcription factors GmbZIP97 and GmbZIP159, which were both upregulated in the gmga3ox1 mutants and induced by the gibberellin synthesis inhibitor uniconazole, could bind to the promoter of GmRCAß and activate its expression. Analysis of genomic sequences with over 2700 soybean accessions suggested that GmGA3ox1 is being gradually utilized in modern breeding. Our results elucidated the important role of GmGA3ox1 in soybean yield. These findings reveal important clues for future high-yield breeding in soybean and other crops.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Regulación hacia Abajo , Giberelinas/metabolismo , Oxigenasas de Función Mixta , Fotosíntesis , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética , Semillas/genética , Glycine max/metabolismo
17.
Theor Appl Genet ; 135(7): 2407-2422, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35639109

RESUMEN

KEY MESSAGE: Plant height of soybean is associated with a haplotype block on chromosome 19, which classified 211 soybean accessions into five distinct groups showing significant differences for the target trait. Genetic variation is pivotal for crop improvement. Natural populations are precious genetic resources. However, efficient strategies for the targeted utilization of these resources for quantitative traits, such as plant height (PH), are scarce. Being an important agronomic trait associated with soybean yield and quality, it is imperative to unravel the genetic mechanisms underlying PH in soybean. Here, a genome-wide association study (GWAS) was performed to identify single nucleotide polymorphisms (SNPs) significantly associated with PH in a natural population of 211 cultivated soybeans, which was genotyped with NJAU 355 K Soy SNP Array and evaluated across six environments. A total of 128 SNPs distributed across 17 chromosomes were found to be significantly associated with PH across six environments and a combined environment. Three significant SNPs were consistently identified in at least three environments on Chr.02 (AX-93958260), Chr.17 (AX-94154834), and Chr.19 (AX-93897200). Genomic regions of ~ 130 kb flanking these three consistent SNPs were considered as stable QTLs, which included 169 genes. Of these, 22 genes (including Dt1) were prioritized and defined as putative candidates controlling PH. The genomic region flanking 12 most significant SNPs was in strong linkage disequilibrium (LD). These SNPs formed a single haplotype block containing five haplotypes for PH, namely Hap-A, Hap-B, Hap-C, Hap-D, and Hap-E. Deployment of such superior haplotypes in breeding programs will enable development of improved soybean varieties with desirable plant height.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Genoma de Planta , Haplotipos , Desequilibrio de Ligamiento , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Glycine max/genética
18.
Mol Breed ; 42(5): 29, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-37309533

RESUMEN

Phosphorus (P) is one of the important mineral elements required for plant growth and development. However, because of the low mobility in soil, P deficiency has been an important factor limiting soybean production. Here, we identified 14 PHR (phosphate starvation response) genes in soybean genome and verified that two previously unreported GmPHR members, GmPHR14 and GmPHR32, were involved in low-P stress tolerance in soybean. GmPHR14 and GmPHR32 were present in two diverged branches of the phylogenic tree. Both genes were highly expressed in roots and root nodules and were induced by P deficiency. GmPHR14 and GmPHR32 both were expressed in the nucleus. The 211 amino acids in the N terminus of GmPHR32 were found to be required for the transcriptional activity. Overexpressing GmPHR14 or GmPHR32 in soybean hairy roots significantly increased roots and shoots dry weight under low-P condition, and overexpressing GmPHR14 additionally significantly increased roots P concentration under low-P condition. GmPHR14 and GmPHR32 were polymorphic in soybean population and the elite haplotype2 (Hap2) for both genes was preferentially present in improved cultivars and showed significantly higher shoots dry weight under low-P condition than the other two haplotypes. These results suggested GmPHR14 and GmPHR32 both positively regulated low-P responses in soybean, and would shed light on the molecular mechanism of low-P stress tolerance. Furthermore, the identified elite haplotypes would be useful in P-efficient soybean breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01301-z.

19.
PLoS Genet ; 15(7): e1008267, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31291251

RESUMEN

Increasing seed oil content is one of the most important breeding goals for soybean due to a high global demand for edible vegetable oil. However, genetic improvement of seed oil content has been difficult in soybean because of the complexity of oil metabolism. Determining the major variants and molecular mechanisms conferring oil accumulation is critical for substantial oil enhancement in soybean and other oilseed crops. In this study, we evaluated the seed oil contents of 219 diverse soybean accessions across six different environments and dissected the underlying mechanism using a high-resolution genome-wide association study (GWAS). An environmentally stable quantitative trait locus (QTL), GqOil20, significantly associated with oil content was identified, accounting for 23.70% of the total phenotypic variance of seed oil across multiple environments. Haplotype and expression analyses indicate that an oleosin protein-encoding gene (GmOLEO1), colocated with a leading single nucleotide polymorphism (SNP) from the GWAS, was significantly correlated with seed oil content. GmOLEO1 is predominantly expressed during seed maturation, and GmOLEO1 is localized to accumulated oil bodies (OBs) in maturing seeds. Overexpression of GmOLEO1 significantly enriched smaller OBs and increased seed oil content by 10.6% compared with those of control seeds. A time-course transcriptomics analysis between transgenic and control soybeans indicated that GmOLEO1 positively enhanced oil accumulation by affecting triacylglycerol metabolism. Our results also showed that strong artificial selection had occurred in the promoter region of GmOLEO1, which resulted in its high expression in cultivated soybean relative to wild soybean, leading to increased seed oil accumulation. The GmOLEO1 locus may serve as a direct target for both genetic engineering and selection for soybean oil improvement.


Asunto(s)
Glycine max/crecimiento & desarrollo , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Semillas/química , Domesticación , Ingeniería Genética , Estudio de Asociación del Genoma Completo , Haplotipos , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , Semillas/crecimiento & desarrollo , Glycine max/genética , Glycine max/metabolismo , Triglicéridos/metabolismo
20.
PLoS Genet ; 15(1): e1007798, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30615606

RESUMEN

Salt stress is one of the major abiotic factors that affect the metabolism, growth and development of plants, and soybean [Glycine max (L.) Merr.] germination is sensitive to salt stress. Thus, to ensure the successful establishment and productivity of soybeans in saline soil, the genetic mechanisms of salt tolerance at the soybean germination stage need to be explored. In this study, a population of 184 recombinant inbred lines (RILs) was utilized to map quantitative trait loci (QTLs) related to salt tolerance. A major QTL related to salt tolerance at the soybean germination stage named qST-8 was closely linked with the marker Sat_162 and detected on chromosome 8. Interestingly, a genome-wide association study (GWAS) identified several single nucleotide polymorphisms (SNPs) significantly associated with salt tolerance in the same genetic region on chromosome 8. Resequencing, bioinformatics and gene expression analyses were implemented to identify the candidate gene Glyma.08g102000, which belongs to the cation diffusion facilitator (CDF) family and was named GmCDF1. Overexpression and RNA interference of GmCDF1 in soybean hairy roots resulted in increased sensitivity and tolerance to salt stress, respectively. This report provides the first demonstration that GmCDF1 negatively regulates salt tolerance by maintaining K+-Na+ homeostasis in soybean. In addition, GmCDF1 affected the expression of two ion homeostasis-associated genes, salt overly sensitive 1 (GmSOS1) and Na+/H+ exchanger 1 (GmNHX1), in transgenic hairy roots. Moreover, a haplotype analysis detected ten haplotypes of GmCDF1 in 31 soybean genotypes. A candidate-gene association analysis showed that two SNPs in GmCDF1 were significantly associated with salt tolerance and that Hap1 was more sensitive to salt stress than Hap2. The results demonstrated that the expression level of GmCDF1 was negatively correlated with salt tolerance in the 31 soybean accessions (r = -0.56, P < 0.01). Taken together, these results not only indicate that GmCDF1 plays a negative role in soybean salt tolerance but also help elucidate the molecular mechanisms of salt tolerance and accelerate the breeding of salt-tolerant soybean.


Asunto(s)
Glycine max/crecimiento & desarrollo , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo/genética , Tolerancia a la Sal/genética , Alelos , Cationes/química , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Genotipo , Germinación/genética , Haplotipos , Fenotipo , Fitomejoramiento , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Proteína SOS1/genética , Glycine max/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA