Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Plant Cell ; 36(5): 1697-1717, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299434

RESUMEN

Proper anther dehiscence is essential for successful pollination and reproduction in angiosperms, and jasmonic acid (JA) is crucial for the process. However, the mechanisms underlying the tight regulation of JA biosynthesis during anther development remain largely unknown. Here, we demonstrate that the rice (Oryza sativa L.) ethylene-response factor-associated amphiphilic repression (EAR) motif-containing protein TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTORS (TCP) INTERACTOR CONTAINING EAR MOTIF PROTEIN1 (OsTIE1) tightly regulates JA biosynthesis by repressing TCP transcription factor OsTCP1/PCF5 during anther development. The loss of OsTIE1 function in Ostie1 mutants causes male sterility. The Ostie1 mutants display inviable pollen, early stamen filament elongation, and precocious anther dehiscence. In addition, JA biosynthesis is activated earlier and JA abundance is precociously increased in Ostie1 anthers. OsTIE1 is expressed during anther development, and OsTIE1 is localized in nuclei and has transcriptional repression activity. OsTIE1 directly interacts with OsTCP1, and overexpression of OsTCP1 caused early anther dehiscence resembling that of Ostie1. JA biosynthesis genes including rice LIPOXYGENASE are regulated by the OsTIE1-OsTCP1 complex. Our findings reveal that the OsTIE1-OsTCP1 module plays a critical role in anther development by finely tuning JA biosynthesis and provide a foundation for the generation of male sterile plants for hybrid seed production.


Asunto(s)
Ciclopentanos , Flores , Regulación de la Expresión Génica de las Plantas , Oryza , Oxilipinas , Infertilidad Vegetal , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Flores/genética , Flores/metabolismo , Flores/crecimiento & desarrollo , Flores/fisiología , Infertilidad Vegetal/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Polen/genética , Polen/crecimiento & desarrollo , Polen/metabolismo , Plantas Modificadas Genéticamente , Mutación
2.
Plant Physiol ; 195(2): 1586-1600, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38478430

RESUMEN

Leaf angle is a major trait of ideal architecture, which is considered to influence rice (Oryza sativa) cultivation and grain yield. Although a few mutants with altered rice leaf inclination angles have been reported, the underlying molecular mechanism remains unclear. In this study, we showed that a WRKY transcription factor gene, OsWRKY72, was highly expressed in the leaf sheath and lamina joint. Phenotypic analyses showed that oswrky72 mutants had smaller leaf angles than the wild type, while OsWRKY72 overexpression lines exhibited an increased leaf angle. This observation suggests that OsWRKY72 functions as a positive regulator, promoting the enlargement of the leaf angle. Our bioinformatics analysis identified LAZY1 as the downstream gene of OsWRKY72. Electrophoretic mobility shift assays and dual-luciferase analysis revealed that OsWRKY72 directly inhibited LAZY1 by binding to its promoter. Moreover, knocking out OsWRKY72 enhanced shoot gravitropism, which contrasted with the phenotype of lazy1 plants. These results imply that OsWRKY72 regulates the leaf angle through gravitropism by reducing the expression of LAZY1. In addition, OsWRKY72 could directly regulate the expression of other leaf angle-related genes such as FLOWERING LOCUS T-LIKE 12 (OsFTL12) and WALL-ASSOCIATED KINASE 11 (OsWAK11). Our study indicates that OsWRKY72 contributes positively to the expansion of the leaf angle by interfering with shoot gravitropism in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gravitropismo , Oryza , Hojas de la Planta , Proteínas de Plantas , Brotes de la Planta , Factores de Transcripción , Oryza/genética , Oryza/fisiología , Oryza/crecimiento & desarrollo , Gravitropismo/genética , Gravitropismo/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/anatomía & histología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Regiones Promotoras Genéticas/genética , Fenotipo
3.
J Integr Plant Biol ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818952

RESUMEN

The heading date of rice is a crucial agronomic characteristic that influences its adaptability to different regions and its productivity potential. Despite the involvement of WRKY transcription factors in various biological processes related to development, the precise mechanisms through which these transcription factors regulate the heading date in rice have not been well elucidated. The present study identified OsWRKY11 as a WRKY transcription factor which exhibits a pivotal function in the regulation of the heading date in rice through a comprehensive screening of a clustered regularly interspaced palindromic repeats (CRISPR) ‒ CRISPR-associated nuclease 9 mutant library that specifically targets the WRKY genes in rice. The heading date of oswrky11 mutant plants and OsWRKY11-overexpressing plants was delayed compared with that of the wild-type plants under short-day and long-day conditions. Mechanistic investigation revealed that OsWRKY11 exerts dual effects on transcriptional promotion and suppression through direct and indirect DNA binding, respectively. Under normal conditions, OsWRKY11 facilitates flowering by directly inducing the expression of OsMADS14 and OsMADS15. The presence of elevated levels of OsWRKY11 protein promote formation of a ternary protein complex involving OsWRKY11, Heading date 1 (Hd1), and Days to heading date 8 (DTH8), and this complex then suppresses the expression of Ehd1, which leads to a delay in the heading date. Subsequent investigation revealed that a mild drought condition resulted in a modest increase in OsWRKY11 expression, promoting heading. Conversely, under severe drought conditions, a significant upregulation of OsWRKY11 led to the suppression of Ehd1 expression, ultimately causing a delay in heading date. Our findings uncover a previously unacknowledged mechanism through which the transcription factor OsWRKY11 exerts a dual impact on the heading date by directly and indirectly binding to the promoters of target genes.

4.
BMC Plant Biol ; 23(1): 53, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36694135

RESUMEN

BACKGROUND: Many data suggest that the sucrose non-fermenting 1-related kinases 2 (SnRK2s) are very important to abiotic stress for plants. In rice, these kinases are known as osmotic stress/ABA-activated protein kinases (SAPKs). Osmotic stress/ABA-activated protein kinase 3 (OsSAPK3) is a member of SnRK2II in rice, but its function is still unclear. RESULTS: The expression of OsSAPK3 was up regulated by drought, NaCl, PEG and ABA. OsSAPK3 mutated seedings (sapk3-1 and sapk3-2) showed reduced hypersensitivity to exogenous ABA. In addition, under drought conditions, sapk3-1 and sapk3-2 showed more intolerance to drought, including decreased survival rate, increased water loss rate, increased stomatal conductance and significantly decreased expression levels of SLAC1 and SLAC7. Physiological and metabolic analyses showed that OsSAPK3 might play an important role in drought stress signaling pathway by affecting osmotic adjustment and osmolytes, ROS detoxification and expression of ABA dependent and independent dehydration-responsive genes. All gronomic traits analyses demonstrated that OsSAPK3 could improve rice yield by affecting the regulation of tiller numbers and grain size. CONCLUSION: OsSAPK3 plays an important role in both ABA-dependent and ABA-independent drought stress responses. More interestingly, OsSAPK3 could improve rice yield by indirectly regulating tiller number and grain size. These findings provide new insight for the development of drought-resistant rice.


Asunto(s)
Resistencia a la Sequía , Oryza , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteína Quinasa 12 Activada por Mitógenos/genética , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Grano Comestible/genética , Sequías , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas , Ácido Abscísico/metabolismo
5.
J Exp Bot ; 74(4): 1162-1175, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36445012

RESUMEN

Seed plants have evolved mechanisms that maintain the dormancy of mature seeds until the time is appropriate for germination. Seed germination is a critical step in the plant life cycle, and it is an important trait in relation to agricultural production. The process is precisely regulated by various internal and external factors, and in particular by diverse endogenous hormones. Jasmonates (JAs) are one of the main plant hormones that mediate stress responses, and recent studies have provided evidence of their inhibitory effects on seed germination. In this review, we summarize our current understanding of the molecular mechanisms underlying the regulatory roles of JAs during the seed germination stage. We describe the crosstalk between JA and other phytohormones that influence seed germination, such as abscisic acid and gibberellic acid.


Asunto(s)
Germinación , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/fisiología , Germinación/fisiología , Semillas/fisiología , Ácido Abscísico , Latencia en las Plantas , Regulación de la Expresión Génica de las Plantas
6.
Plant Cell ; 32(12): 3846-3865, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33023956

RESUMEN

Abscisic acid (ABA) is known to suppress seed germination and post-germinative growth of Arabidopsis (Arabidopsis thaliana), and jasmonate (JA) enhances ABA function. However, the molecular mechanism underlying the crosstalk between the ABA and JA signaling pathways remains largely elusive. Here, we show that exogenous coronatine, a JA analog structurally similar to the active conjugate jasmonate-isoleucine, significantly enhances the delayed seed germination response to ABA. Disruption of the JA receptor CORONATINE INSENSITIVE1 or accumulation of the JA signaling repressor JASMONATE ZIM-DOMAIN (JAZ) reduced ABA signaling, while jaz mutants enhanced ABA responses. Mechanistic investigations revealed that several JAZ repressors of JA signaling physically interact with ABSCISIC ACID INSENSITIVE3 (ABI3), a critical transcription factor that positively modulates ABA signaling, and that JAZ proteins repress the transcription of ABI3 and ABI5. Further genetic analyses showed that JA activates ABA signaling and requires functional ABI3 and ABI5. Overexpression of ABI3 and ABI5 simultaneously suppressed the ABA-insensitive phenotypes of the coi1-2 mutant and JAZ-accumulating (JAZ-ΔJas) plants. Together, our results reveal a previously uncharacterized signaling module in which JAZ repressors of the JA pathway regulate the ABA-responsive ABI3 and ABI5 transcription factors to integrate JA and ABA signals during seed germination and post-germinative growth.


Asunto(s)
Aminoácidos/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Indenos/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/efectos de los fármacos , Ácido Abscísico/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Ciclopentanos/metabolismo , Germinación/efectos de los fármacos , Mutación , Oxilipinas/metabolismo , Fenotipo , Plantas Modificadas Genéticamente , Semillas/efectos de los fármacos , Semillas/genética , Semillas/metabolismo , Semillas/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
J Integr Plant Biol ; 65(10): 2320-2335, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37688324

RESUMEN

Diterpenoid alkaloids (DAs) have been often utilized in clinical practice due to their analgesic and anti-inflammatory properties. Natural DAs are prevalent in the family Ranunculaceae, notably in the Aconitum genus. Nevertheless, the evolutionary origin of the biosynthesis pathway responsible for DA production remains unknown. In this study, we successfully assembled a high-quality, pseudochromosome-level genome of the DA-rich species Aconitum vilmorinianum (A. vilmorinianum) (5.76 Gb). An A. vilmorinianum-specific whole-genome duplication event was discovered using comparative genomic analysis, which may aid in the evolution of the DA biosynthesis pathway. We identified several genes involved in DA biosynthesis via integrated genomic, transcriptomic, and metabolomic analyses. These genes included enzymes encoding target ent-kaurene oxidases and aminotransferases, which facilitated the activation of diterpenes and insertion of nitrogen atoms into diterpene skeletons, thereby mediating the transformation of diterpenes into DAs. The divergence periods of these genes in A. vilmorinianum were further assessed, and it was shown that two major types of genes were involved in the establishment of the DA biosynthesis pathway. Our integrated analysis offers fresh insights into the evolutionary origin of DAs in A. vilmorinianum as well as suggestions for engineering the biosynthetic pathways to obtain desired DAs.


Asunto(s)
Aconitum , Alcaloides , Diterpenos , Aconitum/genética , Aconitum/metabolismo , Multiómica , Diterpenos/metabolismo , Alcaloides/metabolismo , Transcriptoma/genética , Raíces de Plantas
8.
BMC Microbiol ; 22(1): 70, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264111

RESUMEN

BACKGROUND: The plant microbiome is vital for plant health, fitness, and productivity. Interestingly, plant metabolites and the plant microbiome can influence each other. The combination of metabolomics and microbiome may reveal the critical links between the plant and its microbiome. It is of great significance to agricultural production and human health, especially for Chinese medicine research. Aconitum vilmorinianum Kom. is a herb with alkaloid activities, and its roots are the raw material for some Chinese medicines. Former studies have investigated alkaloidal metabolites and antibacterial activities of endophytes in A. vilmorinianum roots. However, there are limited reports on the root microbiota that can influence the alkaloidal metabolome of A. vilmorinianum. RESULTS: This research used ultra performance liquid chromatography-tandem mass spectrometry technology and high-throughput sequencing to examine the alkaloidal metabolome, bacterial microbiota, and fungal microbiota in A. vilmorinianum roots at two different sites in China. The results revealed that the samples from the two sites were rich in distinct alkaloidal metabolites and recruited significantly different root microbiota. Based on bioinformatics analysis, we found the potential bacterial and fungal microbiota impacting the alkaloidal metabolome in A. vilmorinianum. CONCLUSION: Our findings reveal the composition of the alkaloidal metabolome, bacterial root microbiota, and fungal root microbiota in A. vilmorinianum roots at two different sites. Potential root microbiota that can influence the alkaloidal metabolome of A. vilmorinianum are indicated. This study provides a strategy for the cultivation and research of A. vilmorinianum and other Chinese herbs.


Asunto(s)
Aconitum , Alcaloides , Microbiota , Aconitum/química , Bacterias/genética , Humanos , Metaboloma , Metabolómica/métodos
9.
J Exp Bot ; 73(1): 11-21, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34599804

RESUMEN

Plants dynamically synchronize their flowering time with changes in the internal and external environments through a variety of signaling pathways to maximize fitness. In the last two decades, the major pathways associated with flowering, including the photoperiod, vernalization, age, autonomous, gibberellin, and ambient temperature pathways, have been extensively analyzed. In recent years, an increasing number of signals, such as sugar, thermosensory, stress, and certain hormones, have been shown to be involved in fine-tuning flowering time. Among these signals, the jasmonate signaling pathway has a function in the determination of flowering time that has not been systematically summarized. In this review, we present an overview of current knowledge of jasmonate control of flowering and discuss jasmonate crosstalk with other signals (such as gibberellin, defense, and touch) during floral transition.


Asunto(s)
Arabidopsis , Ciclopentanos , Flores , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Fotoperiodo
10.
J Exp Bot ; 73(1): 182-196, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34435636

RESUMEN

The plant-specific VQ gene family participates in diverse physiological processes but little information is available on their role in leaf senescence. Here, we show that the VQ motif-containing proteins, Arabidopsis SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2 are negative regulators of abscisic acid (ABA)-mediated leaf senescence. Loss of SIB1 and SIB2 function resulted in increased sensitivity of ABA-induced leaf senescence. In contrast, overexpression of SIB1 significantly delayed this process. Moreover, biochemical studies revealed that SIBs interact with WRKY75 transcription factor. Loss of WRKY75 function decreased sensitivity to ABA-induced leaf senescence, while overexpression of WRKY75 significantly accelerated this process. Chromatin immunoprecipitation assays revealed that WRKY75 directly binds to the promoters of GOLDEN 2-LIKE1(GLK1) and GLK2, to repress their expression. SIBs repress the transcriptional function of WRKY75 and negatively regulate ABA-induced leaf senescence in a WRKY75-dependent manner. In contrast, WRKY75 positively modulates ABA-mediated leaf senescence in a GLK-dependent manner. In addition, SIBs inhibit WRKY75 function in ABA-mediated seed germination. These results demonstrate that SIBs can form a complex with WRKY75 to regulate ABA-mediated leaf senescence and seed germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación , Senescencia de la Planta , Unión Proteica , Semillas/metabolismo , Factor sigma
11.
Plant Cell ; 31(7): 1520-1538, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31123050

RESUMEN

ABSCISIC ACID INSENSITIVE5 (ABI5) is a crucial regulator of abscisic acid (ABA) signaling pathways involved in repressing seed germination and postgerminative growth in Arabidopsis (Arabidopsis thaliana). ABI5 is precisely modulated at the posttranslational level; however, the transcriptional regulatory mechanisms underlying ABI5 and its interacting transcription factors remain largely unknown. Here, we found that INDUCER OF CBF EXPRESSION1 (ICE1) physically associates with ABI5. ICE1 negatively regulates ABA responses during seed germination and directly suppresses ABA-responsive LATE EMBRYOGENESIS ABUNDANT6 (EM6) and EM1 expression. Genetic analysis demonstrated that the ABA-hypersensitive phenotype of the ice1 mutant requires ABI5. ICE1 interferes with the transcriptional activity of ABI5 to mediate downstream regulons. Importantly, ICE1 also interacts with DELLA proteins, which stimulate ABI5 during ABA signaling. Disruption of ICE1 partially restored the ABA-hyposensitive phenotype of the della mutant, gai-t6 rga-t2 rgl1-1 rgl2-1, indicating that ICE1 functions antagonistically with DELLA in ABA signaling. Consistently, DELLA proteins repress ICE1's transcriptional function and the antagonistic effect of ICE1 on ABI5. Collectively, our study demonstrates that ICE1 antagonizes ABI5 and DELLA activity to maintain the appropriate level of ABA signaling during seed germination, providing a mechanistic understanding of how ABA signaling is fine-tuned by a transcriptional complex involving ABI5 and its interacting partners.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Germinación , Semillas/crecimiento & desarrollo , Transducción de Señal , Factores de Transcripción/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Epistasis Genética/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Germinación/efectos de los fármacos , Modelos Biológicos , Mutación/genética , Fenotipo , Unión Proteica/efectos de los fármacos , Semillas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
12.
J Integr Plant Biol ; 64(1): 135-148, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34742166

RESUMEN

Traditional upland rice generally exhibits insufficient grains resulting from abnormal endosperm development compared to paddy rice. However, the underlying molecular mechanism of this trait is poorly understood. Here, we cloned the uridine 5'-diphospho (UDP)-glucosyltransferase gene EDR1 (Endosperm Development in Rice) responsible for differential endosperm development between upland rice and paddy rice by performing quantitative trait loci analysis and map-based cloning. EDR1 was highly expressed in developing seeds during grain filling. Natural variations in EDR1 significantly reduced the UDP-glucosyltransferase activity of EDR1YZN compared to EDR1YD1 , resulting in abnormal endosperm development in the near-isogenic line, accompanied by insufficient grains and changes in grain quality. By analyzing the distribution of the two alleles EDR1YD1 and EDR1YZN among diverse paddy rice and upland rice varieties, we discovered that EDR1 was conserved in upland rice, but segregated in paddy rice. Further analyses of grain chalkiness in the alleles of EDR1YD1 and EDR1YZN varieties indicated that rice varieties harboring EDR1YZN and EDR1YD1 preferentially showed high chalkiness, and low chalkiness, respectively. Taken together, these results suggest that the UDP-glucosyltransferase gene EDR1 is an important determinant controlling differential endosperm development between upland rice and paddy rice.


Asunto(s)
Oryza , Alelos , Endospermo/genética , Glucosiltransferasas/genética , Oryza/genética , Uridina
13.
J Exp Bot ; 72(4): 1473-1489, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33165597

RESUMEN

Necrotrophic fungi cause devastating diseases in both horticultural and agronomic crops, but our understanding of plant defense responses against these pathogens is still limited. In this study, we demonstrated that WRKY75 positively regulates jasmonate (JA)-mediated plant defense against necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola, and also affects the sensitivity of plants to JA-inhibited seed germination and root growth. Quantitative analysis indicated that several JA-associated genes, such as OCTADECANOID-RESPONSIVE ARABIDOPSIS (ORA59) and PLANT DEFENSIN 1.2A (PDF1.2), were significantly reduced in expression in wrky75 mutants, and enhanced in WRKY75 overexpressing transgenic plants. Immunoprecipitation assays revealed that WRKY75 directly binds to the promoter of ORA59 and represses itstranscription. In vivo and in vitro experiments suggested that WRKY75 interacts with several JASMONATE ZIM-domain proteins, repressors of the JA signaling pathway. We determined that JASMONATE-ZIM-DOMAIN PROTEIN 8 (JAZ8) represses the transcriptional function of WRKY75, thereby attenuating the expression of its regulation. Overexpression of JAZ8 repressed plant defense responses to B. cinerea. Our study provides evidence that WRKY75 functions as a critical component of the JA-mediated signaling pathway to positively regulate Arabidopsis defense responses to necrotrophic pathogens.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Ciclopentanos , Oxilipinas , Enfermedades de las Plantas/microbiología , Factores de Transcripción/fisiología , Alternaria , Arabidopsis/microbiología , Botrytis , Regulación de la Expresión Génica de las Plantas
14.
J Pineal Res ; 70(4): e12736, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33811388

RESUMEN

Seed germination, an important developmental stage in the life cycle of seed plants, is regulated by complex signals. Melatonin is a signaling molecule associated with seed germination under stressful conditions, although the underlying regulatory mechanisms are largely unknown. In this study, we showed that a low concentration (10 µM or 100 µM) of melatonin had no effect on seed germination, but when the concentration of melatonin increased to 500 µM or 1000 µM, seed germination was significantly inhibited in Arabidopsis. RNA sequencing analysis showed that melatonin regulated seed germination correlated to phytohormones abscisic acid (ABA), gibberellin (GA), and auxin. Further investigation revealed that ABA and melatonin synergistically inhibited seed germination, while GA and auxin antagonized the inhibitory effect of seed germination by melatonin. Disruption of the melatonin biosynthesis enzyme gene serotonin N-acetyltransferase (SNAT) or N-acetylserotonin methyltransferase (ASMT) promoted seed germination, while overexpression of ASMT inhibited seed germination. Taken together, our study sheds new light on the function and mechanism of melatonin in modulating seed germination in Arabidopsis.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/fisiología , Germinación/fisiología , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Melatonina/metabolismo , Proteínas de Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Semillas/crecimiento & desarrollo
15.
J Integr Plant Biol ; 63(10): 1712-1723, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34152677

RESUMEN

ETHYLENE RESPONSE FACTOR1 (ERF1) is a key component in ethylene signaling, playing crucial roles in both biotic and abiotic stress responses. Here, we demonstrate that ERF1 also has an important role during floral initiation in Arabidopsis thaliana. Knockdown or knockout of ERF1 accelerated floral initiation, whereas overexpression of ERF1 dramatically delayed floral transition. These contrasting phenotypes were correlated with opposite transcript levels of FLOWERING LOCUS T (FT). Chromatin immunoprecipitation (ChIP) assays revealed that ERF1 associates with genomic regions of the FT gene to repress its transcription. ft-10/ERF1RNAi plants showed a similar flowering phenotype to the ft-10 mutant, whereas the flowering of FTox/ERF1ox mimicked that of FTox plants, suggesting that ERF1 acts upstream of FT during floral initiation. Similarly, altered floral transition in ethylene-related mutants was also correlated with FT expression. Further analysis suggested that ERF1 also participates in delay in flowering-time control mediated by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Thus, ERF1 may act as a negative modulator of flowering-time control by repressing FT transcription in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Unión al ADN/metabolismo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Etilenos
16.
Plant Physiol ; 181(1): 97-111, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31235561

RESUMEN

The appropriate timing of flowering is critical for plant reproductive success. Although the FLOWERING LOCUS T (FT)-FD module plays crucial roles in the photoperiodic flowering pathway, the underlying mechanisms and signaling pathways involved still remain elusive. Here, we demonstrate that class II TCP transcription factors (TFs) integrate into the FT-FD complex to control floral initiation in Arabidopsis (Arabidopsis thaliana). Class II CINCINNATA (CIN) TCP TFs function as transcriptional activators by directly binding to the promoters of downstream floral meristem identity genes, such as APETALA1 (AP1). In addition, these TCPs directly interact with FD, a basic Leu zipper TF that plays a critical role in photoperiodic flowering, which further activates AP1 expression. Genetic analyses indicated that class II CIN TCP TFs function synergistically with FT and FD, to positively regulate flowering in an AP1-dependent manner. Thus, our results provide compelling evidence that class II CIN TCP TFs act directly at the AP1 promoter to enhance its transcription, thus further elucidating the molecular mechanisms underlying the regulation of photoperiodic flowering in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Flores/genética , Flores/fisiología , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Meristema/genética , Meristema/fisiología , Regiones Promotoras Genéticas , Factores de Transcripción/genética
17.
Plant Cell Environ ; 43(1): 261-274, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31674679

RESUMEN

Iron (Fe) is an essential micronutrient for plant growth development and plays a key role in regulating numerous cellular processes. In rice, OsHRZ1, an Fe-binding ubiquitin ligase, is a putative sensor of Fe homeostasis that negatively regulates iron acquisition. Despite its apparent importance, only a single basic-Helix-Loop-Helix (bHLH) transcription factor, OsPRI1, has been identified as a direct target of OsHRZ1. In this study, we identified and functionally characterized OsPRI2 and OsPRI3, two paralogs of OsPRI1, observing that they directly interact with OsHRZ1. Additional analyses suggested that OsHRZ1 promotes the degradation of OsPRI2 and OsPRI3. The translocation of Fe from roots to shoots was impaired in plants with loss-of-function mutations in OsPRI2 or OsPRI3, causing the downregulation of Fe-deficiency-responsive genes. In contrast, overexpression of OsPRI2 and OsPRI3 promotes Fe accumulation and activates the expression of Fe-deficiency-responsive genes. We also provide evidence that OsPRI2 and OsPRI3 bind to the promoters of OsIRO2 and OsIRO3, two key regulators of Fe homeostasis. Moreover, OsPRI2 and OsPRI3 directly induce expression of the metal-nicotianamine transporter, OsYSL2, by associating with the promoter in response to Fe deficiency. Our results provide insights into the complex network regulating Fe homeostasis in rice.


Asunto(s)
Homeostasis/fisiología , Hierro/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Proteínas de Transporte de Catión/metabolismo , Regulación hacia Abajo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Homeostasis/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente
18.
Plant Cell Environ ; 43(7): 1792-1806, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32279333

RESUMEN

Necrotrophic pathogens such as Botrytis cinerea cause significant crop yield losses. Plant CCCH proteins play important roles in pathogen resistance responses. However, the CCCH-mediated defense mechanisms against necrotrophic pathogens are unclear. Here, we report that the Arabidopsis CCCH protein C3H14 positively regulates basal defense against B. cinerea mainly by WRKY33 signaling. Simultaneous mutation of C3H14 and its paralog C3H15 resulted in enhanced susceptibility to B. cinerea, while C3H14 or C3H15 overexpression lines exhibited reduced susceptibility. A large number of differentially expressed genes (DEGs) were present in the c3h14c3h15 double mutant and C3H14 overexpression plants compared with wild-type plants at 24 hr post infection. These DEGs covered over one third of B. cinerea-responsive WRKY33 targets, including genes involved in jasmonic acid (JA)/ethylene (ET) signaling, and camalexin biosynthesis. Genetic analysis indicated that C3H14 mainly depended on WRKY33 to modulate defense against B. cinerea. Moreover, C3H14 activated the WRKY33-ORA59 and -PAD3 cascades to correspondingly control JA/ET- and camalexin-mediated defense responses. However, C3H14 was essential for B. cinerea-induced production of 12-oxo-phytodienoic acid and it also directly mediated ORA59-dependent JA/ET signaling after infection. Therefore, C3H14 may act as a novel transcriptional regulator of the WRKY33-mediated defense pathway.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/inmunología , Botrytis , Enfermedades de las Plantas/inmunología , Proteínas de Unión al ARN/fisiología , Factores de Transcripción/fisiología , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Técnicas del Sistema de Dos Híbridos
19.
J Integr Plant Biol ; 62(11): 1659-1673, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32396254

RESUMEN

WRKY12 and WRKY13 are two WRKY transcription factors that play important roles in the control of flowering time under short-day (SD) conditions. The temporally regulated expression of WRKY12 and WRKY13 indicates that they may be involved in the age-mediated flowering pathway. However, their roles in this pathway are poorly understood. Here, we show that the transcription of WRKY12 and WRKY13 is directly regulated by SQUAMOSA PROMOTER BINDING-LIKE 10 (SPL10), a transcription factor downstream of the age pathway. Binding and activation analyses revealed that SPL10 functions as a positive regulator of WRKY12 and a negative regulator of WRKY13. Further mechanistic investigation revealed that WRKY12 and WRKY13 physically interact with SPL10 and that both of them bind to the promoter of miR172b. Thus, the WRKY12-SPL10 and WRKY13-SPL10 interactions facilitate and inhibit SPL10 transcriptional function, respectively, to regulate miR172b expression. Together, our results show that WRKY12 and WRKY13 participate in the control of age-mediated flowering under SD conditions though physically interacting with SPLs and co-regulating the target gene miR172b.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sitios de Unión , Flores/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética
20.
J Integr Plant Biol ; 62(5): 668-689, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32237201

RESUMEN

Iron (Fe) is indispensable for the growth and development of plants. It is well known that FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) is a key regulator of Fe uptake in Arabidopsis. Here, we identify the Oryza sativa FIT (also known as OsbHLH156) as the interacting partner of IRON-RELATED BHLH TRANSCRIPTION FACTOR 2 (OsIRO2) that is critical for regulating Fe uptake. The OsIRO2 protein is localized in the cytoplasm and nucleus, but OsFIT facilitates the accumulation of OsIRO2 in the nucleus. Loss-of-function mutations of OsFIT result in decreased Fe accumulation, severe Fe-deficiency symptoms, and disrupted expression of Fe-uptake genes. In contrast, OsFIT overexpression promotes Fe accumulation and the expression of Fe-uptake genes. Genetic analyses indicate that OsFIT and OsIRO2 function in the same genetic node. Further analyses suggest that OsFIT and OsIRO2 form a functional transcription activation complex to initiate the expression of Fe-uptake genes. Our findings provide a mechanism understanding of how rice maintains Fe homeostasis.


Asunto(s)
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA