RESUMEN
Leptomeningeal lymphatic endothelial cells (LLECs) are a recently discovered intracranial cellular population with a unique distribution clearly distinct from peripheral lymphatic endothelial cells. Their cellular function and clinical implications remain largely unknown. Consequently, the availability of a supply of LLECs is essential for conducting functional research in vitro. However, there is currently no existing protocol for harvesting and culturing LLECs in vitro. This study successfully harvested LLECs using a multi-step protocol, which included coating the flask with fibronectin, dissecting the leptomeninges with the assistance of a microscope, enzymatically digesting the leptomeninges to prepare a single-cell suspension, inducing the expansion of LLECs with vascular endothelial growth factor-C (VEGF-C), and selecting lymphatic vessel hyaluronic receptor-1 (LYVE-1) positive cells through magnetic-activated cell sorting (MACS). This process ultimately led to the establishment of a primary culture. The purity of the LLECs was confirmed through immunofluorescence staining and flow cytometric analysis, with a purity level exceeding 95%. This multi-step protocol has demonstrated reproducibility and feasibility, which will greatly facilitate the exploration of the cellular function and clinical implications of LLECs.
Asunto(s)
Células Endoteliales , Factor C de Crecimiento Endotelial Vascular , Reproducibilidad de los Resultados , Separación Celular , Citometría de FlujoRESUMEN
Pericytes are crucial mural cells situated within cerebral microcirculation, pivotal in actively modulating cerebral blood flow via contractility adjustments. Conventionally, their contractility is gauged by observing morphological shifts and nearby capillary diameter changes under specific circumstances. Yet, post-tissue fixation, evaluating vitality and ensuing pericyte contractility of imaged brain pericytes becomes compromised. Similarly, genetically labeling brain pericytes falls short in distinguishing between viable and non-viable pericytes, particularly in neurologic conditions like subarachnoid hemorrhage (SAH), where our preliminary investigation validates brain pericyte demise. A reliable protocol has been devised to surmount these constraints, enabling simultaneous fluorescent tagging of both functional and non-functional brain pericytes in brain sections. This labeling method allows high-resolution confocal microscope visualization, concurrently marking the brain slice microvasculature. This innovative protocol offers a means to appraise brain pericyte contractility, its impact on capillary diameter, and pericyte structure. Investigating brain pericyte contractility within the SAH context yields insightful comprehension of its effects on cerebral microcirculation.