RESUMEN
Dexing City is an important mining city in China, abounding in copper ore, lead ore, zinc ore, and other metal resources, and there are two large open-pit mines in its territory, Dexing Copper Mine and Yinshan Mine. The two open-pit mines have been expanding their mining production scale since 2005, with frequent mining activities; and the expansion of the pits and the discharge of solid waste will undoubtedly increase the land use and cause the destruction of vegetation. Therefore, we plan to visualize the change in vegetation cover in Dexing City from 2005 to 2020 and the expansion of the two open-pit mines by calculating changes of the Fractional Vegetation Cover (FVC) in the mining area using remote sensing technology. In this study, we calculated the FVC of Dexing City in 2005, 2010, 2015 and 2020 using data from NASA Landsat Database via ENVI image analysis software, plotted the FVC reclassified maps via ArcGIS, and conducted field investigations in the mining areas of Dexing City. In this way, we can visualize the spatial and temporal changes of vegetation cover in Dexing City from 2005 to 2020, and appreciate the situation of mining expansion and its solid waste discharge in Dexing City. The results of this study showed that the vegetation cover of Dexing City remained stable from 2005 to 2020, as the expansion of mining scale and mine pits was accompanied by active environmental management and land reclamation, setting a positive example for other mining cities.
Asunto(s)
Cobre , Monitoreo del Ambiente , Ciudades , Monitoreo del Ambiente/métodos , Residuos Sólidos , ChinaRESUMEN
Dartford, a town in England, heavily relied on industrial production, particularly mining, which caused significant environmental pollution and geological damage. However, in recent years, several companies have collaborated under the guidance of the local authorities to reclaim the abandoned mine land in Dartford and develop it into homes, known as the Ebbsfleet Garden City project. This project is highly innovative as it not only focuses on environmental management but also provides potential economic benefits, employment opportunities, builds a sustainable and interconnected community, fosters urban development and brings people closer together. This paper presents a fascinating case that employs satellite imagery, statistical data, and Fractional Vegetation Cover (FVC) calculations to analyse the re-vegetation progress of Dartford and the development of the Ebbsfleet Garden City project. The findings indicate that Dartford has successfully reclaimed and re-vegetated the mine land, maintaining a high vegetation cover level while the Ebbsfleet Garden City project has advanced. This suggests that Dartford is committed to environmental management and sustainable development while pursuing construction projects.
Asunto(s)
Minería , Imágenes Satelitales , Humanos , Contaminación Ambiental , Ciudades , Reino Unido , Monitoreo del AmbienteRESUMEN
Tailings ponds, large man-made structures conceived during the mining process for waste storage, often become deserted post-mining, leaving behind a stark, contaminated landscape. This paper posits that these forsaken tailings ponds can be rejuvenated into fertile agricultural land through adept reclamation efforts. Serving as a discussion paper, it engages in a stimulating exploration of the environmental and health risks linked to tailings ponds. It sheds light on the potential and impediments in the transformation of these ponds into agricultural land. The discussion concludes that despite the substantial hurdles in repurposing tailings ponds for agriculture, there are encouraging prospects with the application of multifaceted efforts.
Asunto(s)
Agricultura , Estanques , Humanos , Estanques/químicaRESUMEN
With the depletion of surface resources, mining will develop toward the deep surface in the future, the objective conditions such as the mining environment will be more complex and dangerous than now, and the requirements for personnel and equipment will be higher and higher. The efficient mining of deep space is inseparable from movable and flexible production and transportation equipment such as scrapers. In the new era, intelligence is leading to the development trend of scraper (LHD), path tracking control is the key to the intelligent scraper (LHD), and it is also an urgent problem to be solved for unmanned driving. This paper describes the realization of the automatic operation of articulating the scraper (LHD) from two aspects, a mathematical model and trajectory tracking control method, and it focuses on the research of the path tracking control scheme in the field of unmanned driving, that is, an LQR controller. On this basis, combined with different intelligent clustering algorithms, the parameters of the LQR controller are optimized to find the optimal solution of the LQR controller. Then, the path tracking control of an intelligent LHD unmanned driving technology is studied, focusing on the optimization of linear quadratic optimal control (LQR) and the intelligent cluster algorithms AGA, QPSO, and ACA; this research has great significance for the development of the intelligent scraper (LHD). As mining engineers, we not only need to conduct research for practical engineering projects but also need to produce theoretical designs for advanced mining technology; therefore, the area of intelligent mining is the one we need to explore at present and in the future. Finally, this paper serves as a guide to starting a conversation, and it has implications for the development and the future of underground transportation.
RESUMEN
The recycling bio-waste shells problem has grown more and more serious in recent years and many efforts have been made to solve this problem. One possible solution is to put these bio-shells into concrete and recycle them as building materials using the aggregate matrix concrete approach. To verify the engineering feasibility, the mechanical properties of bio-shells aggregated concrete were invested via gradient substitution rates at 10%, 30%, and 50% with a total of 78 groups of specimens in this paper. Our results show that the mechanical properties of the concrete were enhanced in maximum flexural strength and maximum compressive. Economic performance was also analyzed and found that the costs of frame-shear structure, frame structure, and tube-in-tube structure were reduced by 10.2%, 10%, and 10.3%. The carbon environmental assessment also shows superiority in the carbon reduction of a single specimen with various rates of the shell. In summary, compared with ordinary concrete materials, it is very possible to use waste bio-shells as a substitute for aggregates to develop the sustainable recycling development of concrete materials.
RESUMEN
Direct regeneration method has been widely concerned by researchers in the field of battery recycling because of its advantages of in situ regeneration, short process and less pollutant emission. In this review, we firstly analyze the primary causes for the failure of three representative battery cathodes (lithium iron phosphate, layered lithium transition metal oxide and lithium cobalt oxide), targeting at illustrating their underlying regeneration mechanism and applicability. Efficient stripping of material from the collector to obtain pure cathode material has become a first challenge in recycling, for which we report several pretreatment methods currently available for subsequent regeneration processes. We review and discuss emphatically the research progress of five direct regeneration methods, including solid-state sintering, hydrothermal, eutectic molten salt, electrochemical and chemical lithiation methods. Finally, the application of direct regeneration technology in production practice is introduced, the problems exposed at the early stage of the industrialization of direct regeneration technology are revealed, and the prospect of future large-scale commercial production is proposed. It is hoped that this review will give readers a comprehensive and basic understanding of direct regeneration methods for used lithium-ion batteries and promote the industrial application of direct regeneration technology.
RESUMEN
The direct regeneration method, recognized for its cost-effectiveness, has garnered considerable attentions in the field of battery recycling. In this study, a novel direct regeneration strategy is proposed to repair spent LiFePO4 (S-LFP) cathodes without the need for impurity removal. Instead, the residual conductive carbon and polyvinylidene fluoride (PVDF) in S-LFP are employed as inherent reductive agents. Systematic characterization and analysis reveal that the failure of S-LFP primarily originates from a substantial loss of Li+ and the conversion of LiFePO4 to FePO4. Meanwhile, it is demonstrated that both residual conductive carbon and PVDF play positive roles in promoting the regeneration of S-LFP through distinct mechanisms. As a result, the regenerated LFP exhibits significant recovery in crystal structure and chemical composition as compared to S-LFP, which leads to notably improved lithium storage performance. Furthermore, to further enhance the lithium storage property, a specific amount of glucose (10 %) is introduced during the regeneration of S-LFP, yielding a regenerated product that performs comparably to commercial LFP. Clearly, our approach, in contrast to traditional regeneration methods, maximizes the utilization of residual impurities within S-LFP, resulting in effective regeneration of S-LFP, thereby proving both informative and cost-effective.
RESUMEN
The over-exploitation of mineral resources has led to increasingly serious dust pollution in mines, resulting in a series of negative impacts on the environment, mine workers (occupational health) and nearby residents (public health). For the environment, mine dust pollution is considered a major threat on surface vegetation, landscapes, weather conditions and air quality, leading to serious environmental damage such as vegetation reduction and air pollution; for occupational health, mine dust from the mining process is also regarded as a major threat to mine workers' health, leading to occupational diseases such as pneumoconiosis and silicosis; for public health, the pollutants contained in mine dust may pollute surrounding rivers, farmlands and crops, which poses a serious risk to the domestic water and food security of nearby residents who are also susceptible to respiratory diseases from exposure to mine dust. Therefore, the second section of this paper combines literature research, statistical studies, and meta analysis to introduce the public mainly to the severity of mine dust pollution and its hazards to the environment, mine workers (occupational health), and residents (public health), as well as to present an outlook on the management of mine dust pollution. At the same time, in order to propose a method for monitoring mine dust pollution on a regional scale, based on the Dense Dark Vegetation (DDV) algorithm, the third section of this paper analysed the aerosol optical depth (AOD) change in Dexing City of China using the data of 2010, 2014, 2018 and 2021 from the NASA MCD19A2 Dataset to explore the mine dust pollution situation and the progress of pollution treatment in Dexing City from 2010 to 2021. As a discussion article, this paper aims to review the environmental and health risks caused by mine dust pollution, to remind the public to take mine dust pollution seriously, and to propose the use of remote sensing technologies to monitor mine dust pollution, providing suggestions for local governments as well as mines on mine dust monitoring measures.
Asunto(s)
Contaminación del Aire , Exposición Profesional , Humanos , Polvo/análisis , Tecnología de Sensores Remotos , Aerosoles y Gotitas Respiratorias , Contaminación Ambiental/análisis , Monitoreo del Ambiente/métodosRESUMEN
The increasing frequency of mining activities in the world has led to many environmental pollution problems, such as mine wastewater discharge, mine solid waste dumps, and mine dust dispersion. These problems have negative implications for the environment and the public health of people living nearby the mining areas. Despite this, there are few methods to determine the state of mine pollution on a regional scale. Therefore, we applied remote sensing technologies to assess the mine pollution situation, especially the mine solid waste pollution, of a mining area, taking Qibaoshan Town, Liuyang City, Hunan Province, China, as an example. In our research, we have calculated the vegetation cover change of the Qibaoshan Town over the years (2000-2020), charted the vegetation coverage grade maps, and analysed the tendency of vegetation cover changes, to infer the mine pollution situation, the progress of pollution treatment and the efforts made by the local government and the mines on mine pollution disposal and the land reclamation. Additionally, mining damage can bring about geological hazards such as surface subsidence leading to vegetation destruction, while mining solid waste pollution and discharge can occupy a large amount of land and thus lead to vegetation reduction. As a result, this method of calculating FVC changes in a mining area is particularly suitable for assessing the extent of mining damage, the status of solid waste pollution and discharge, and the progress of land reclamation. In the abstract, we claim that this short communication article serves as a guide to start a conversation, and encourages experts and scholars to engage in this area of research.
Asunto(s)
Monitoreo del Ambiente , Residuos Sólidos , Humanos , Minería , Contaminación Ambiental , Tecnología de Sensores Remotos , ChinaRESUMEN
As global demand for natural resources escalates, the environmental impact stemming from resource extraction has risen to the forefront of contemporary discussions. This paper probed the potential of using vegetation cover as an ecological barometer to gauge the level of environmental damage and restoration in mining areas: a decline in vegetation cover may signify detrimental impacts from intense mining activities, while an increase may indicate effective local environmental stewardship. Therefore, this paper undertook an assessment and discussion of mining damage and environmental management at China's Ta'ershan Mining Area since 2007, calculating and visualizing FVC (Fractional Vegetation Cover) of the Ta'ershan Mining Area to track changes in vegetation cover between 2007 and 2021. Changes in vegetation cover in the Ta'ershan Mining Area could act as a reflection of both mining-induced damage and subsequent successful environmental management by local authorities, providing a practical way to evaluate ecological effects in resource development.
RESUMEN
This paper (Part II), right after the Part I, also as an information article, introduces the recent progress of "green mine construction" in China. China is a big country in resource exploitation, but there are serious problems such as hidden danger, environmental pollution and resource waste in the exploitation of mineral resources in China. Therefore, the promotion of "green" mining technology, the implementation of "green mine construction" and the promotion of small- and medium-sized mines to green non-waste mining mode transformation and upgrading are crucial measures on the road of China's mining development, with very important practical significance. Therefore, this information paper of our Chinese mining research mainly reviews the key progress in the construction and development of green mines and introduces four typical green mine examples in China: (1) the mine with the best green environment in China: Jinhui Mining Co., Ltd., Jiuquan, Gansu Province; (2) the most advanced mine in China: Jinchuan Group Company, Jinchang, Gansu Province; (3) the oldest green mine in China: the Suichang gold mine, Lishui, Zhejiang Province; and (4) the most mechanized mine in China: the Pingshuo Coal Co., Ltd., Shuozhou, Shanxi Province. In the abstract, we claim that Part II serves as a guide to begin a conversation and to encourage experts and scholars to engage in the research of this field.
Asunto(s)
Minas de Carbón , Minería , China , Carbón Mineral/análisis , Contaminación Ambiental/análisisRESUMEN
Tailings concentration is indispensable for backfilling. Additionally, the residual flocculants in the concentration process affect the rheological properties of ultra-fine argillaceous backfilling slurry (e.g., viscosity and yield stress), resulting in a great effect on the fluidity and resistance of pipeline transportation. In this study, to explore the effect of flocculants residue on the rheological properties of the slurry, a series of rheological tests (constant shear rate test and variable shear rate test) were performed by changing the type, dosage, stirring time, temperature of flocculants addition and the amount of binder added. The results showed that the addition of flocculants increased the viscosity and yield stress of slurry. At a certain amount of flocculants additive, the flocculant network structure reached the best development state, which had a positive effect on increasing slurry viscosity and yield stress. As the stirring time increased, the scale of damage to the flocculant network structure became larger, which had a negative effect on increasing slurry viscosity and yield stress. Low temperature weakened the adsorption and bridging effect of polymeric chains, resulting in a poorly developed flocculant network structure, which had a negative effect on increasing slurry viscosity and yield stress. Caused by hydration products, the viscosity and yield stress of slurry with binder further increased. This study is significant for an in-depth study of the rheological and pipeline transport characteristics of ultra-fine argillaceous backfilling slurry, optimising the selection of flocculants for ultrafine particles, guiding backfill parameters and improving the reliability of pipeline transport.
RESUMEN
With the development of technology, the concepts of "green" and "sustainable" have gradually been popularized in all walks of life. With the continuous development of the world mining industry, the efficiency of resource development in various countries has been improved, but mining activities and production will undoubtedly bring many environmental pollution problems. As a mining power, China is one of the first countries to put forward the concept of "green mining". Over the years, as people emphasize safety and environmental protection, green mining technology has become the hot topic. At the same time, groundwater pollution caused by mining has become the focus of China's "green mine construction": with the continuous development of mining, mining activities and production will also undoubtedly bring significant environmental pollution. The environmental pollution of the mined area has a vital influence on the surrounding environment. The pollutants mainly come from mining operations and production of the mineral processing industry, including process wastewater, gas waste, smelting slag, etc., which are all acidic. Acid mine drainage (AMD) occurs in the process of mining production, due to the structure of minerals and the complex reactions between oxygen and minerals, and results in heavy metal ions leaching into groundwater. Once the groundwater is polluted, it will slowly flow to the surrounding area, resulting in the migration and diffusion of pollutants in the groundwater, affecting the surrounding rivers, farmland, and drinking water for residents. In recent years, environmental damage caused by groundwater pollution from underground mines in Shijiazhuang, China, and Selangor, Malaysia, has had a negative impact on rivers, farmland, and human health. At the same time, the paper introduces many key technologies of green mine construction, such as the backfill mining method. In cooperation with China Road & Bridge Corporation, this paper also introduces the progress in the reuse of mining waste, especially the use of mining waste as aggregate to prepare concrete materials for road and bridge construction. This information article introduces the development status of green mine construction in China and briefly reviews the key technologies of green mine construction in China.
Asunto(s)
Contaminantes Ambientales , Agua Subterránea , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente/métodos , Contaminación Ambiental , Humanos , Minería , Contaminantes Químicos del Agua/análisisRESUMEN
As one of the main industrial solid wastes, there are a large number of free alkaloids, chemically bound alkaloids, fluoride, and heavy metal ions in Bayer process red mud (BRM), which are difficult to remove and easily pollute groundwater as a result of open storage. In order to realize the large-scale industrial application of BRM as a backfilling aggregate for underground mining and simultaneously avoid polluting groundwater, the material characteristics of BRM were analyzed through physical, mechanical, and chemical composition tests. The optimum cement-sand ratio and solid mass concentration of the backfilling were obtained based on several mixture proportion tests. According to the results of bleeding, soaking, and toxic leaching experiments, the fuzzy comprehensive evaluation method was used to evaluate the environmental impact of BRM on groundwater. The results show that chemically bound alkaloids that remained in BRM reacted with Ca2+ in PO 42.5 cement, slowed down the solidification speed, and reduced the early strength of red mud-based cemented backfill (RMCB). The hydration products in RMCB, such as AFT and C-S-H gel, had significant encapsulation, solidification, and precipitation inhibition effects on contaminants, which could reduce the contents of inorganic contaminants in soaking water by 26.8% to 93.8% and the leaching of toxic heavy metal ions by 57.1% to 73.3%. As shown by the results of the fuzzy comprehensive evaluation, the degree of pollution of the RMCB in bleeding water belonged to a medium grade â ¢, while that in the soaking water belonged to a low grade II. The bleeding water was diluted by 50-100 times to reach grade I after flowing into the water sump and could be totally recycled for drilling and backfilling, thus causing negligible effects on the groundwater environment.
Asunto(s)
Agua Subterránea , Metales Pesados , Materiales de Construcción , Residuos Industriales/análisis , MineríaRESUMEN
In this work, a sandwich-type electrochemical immunosensor was fabricated to the effective detection of hepatitis B surface antigen (HBsAg). The designed electrochemical immunosensor was based on Au core and Pd shell nanodendrites loaded on amino functionalized molybdenum dioxide nanosheets (Au@Pd NDS/NH2-MoO2 NSs) as the secondary antibody (Ab2) label and silver nanoparticles were loaded by electrodeposited (D-Ag NPs) on the surface of electrode as the platform. Because of the synergistic effect and abundant catalytic activity sites provided by surface dendrite structure, Au@Pd NDs were more effective than single gold and palladium nanoparticles in catalytic reduction of hydrogen peroxide (H2O2). MoO2 had the good catalytic capacity for reduction of H2O2 and favourable electrical conductivity. Hence, the obtained Au@Pd NDS/NH2-MoO2 NSs were more effective than Au@Pd NDs and NH2-MoO2 NSs in catalytic reduction of hydrogen peroxide attribute to a synergistic effect. Also, Ag NPs with admirable electrical conductivity and biocompatibility were used as sensing platforms and primary antibodies (Ab1) carriers, which can accelerate the electron transfer and improve the sensitivity of the immunosensor. Here, the proposed electrochemical immunosensor offered a wide linear interval from 10 fg mL-1 to 100 ng mL-1 and the lower limit of detection of 3.3 fg mL-1 (S/N = 3) for detection of HBsAg under optimal experimental conditions. Furthermore, the accuracy of the actual serum sample analysis was satisfactory, which showed that the electrochemical immunosensor possessed a good application prospect in clinical detection.
Asunto(s)
Oro/química , Antígenos de Superficie de la Hepatitis B/análisis , Inmunoensayo/métodos , Nanopartículas del Metal/química , Molibdeno/química , Óxidos/química , Paladio/química , Anticuerpos Inmovilizados/química , Anticuerpos Inmovilizados/inmunología , Catálisis , Electroquímica , Antígenos de Superficie de la Hepatitis B/sangre , Antígenos de Superficie de la Hepatitis B/química , Antígenos de Superficie de la Hepatitis B/inmunología , Humanos , Límite de DetecciónRESUMEN
The designed synthesis of efficient materials can significantly enhance the performance of electrochemical immunoassay in the detection of diseases, pesticide residues and environmental pollutants. The hollow AgPt@Pt core-shell nanoparticles (AgPt@Pt HNs) have exhibited high catalytic efficiency to the hydrogen peroxide (H2O2) reduction for its high mass activity from their hollow structure. Their limitation of instability can be overcome by loading on polypyrrole nanosheet (PPy NS). Besides, PPy NS exhibits good conductivity, and there exists environmentally-friendly method for its synthetic. Thus, AgPt@Pt HNs loaded on PPy NS (AgPt@Pt HNs/PPy NS) exhibits high catalytic efficiency to the reduction of H2O2 and good stability. Furthermore, the quick electron transfer of AgPt@Pt HNs/PPy NS modified glassy carbon electrode has been evidenced by the finding that the large constant of apparent electron transfer rate has also enlarged the current signal when the amount of electron is invariant. The modified electrode has fabricated a label-free amperometric immunosensor to detect sensitively prostate-specific antigen (PSA) with H2O2 as the electroactive material. The immunosensor in hollow core-shell nanosheet structure exhibiting good detection performance of PSA shows its promising applications in the clinical diagnosis.