Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Nano Lett ; 24(22): 6625-6633, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38788161

RESUMEN

All-solid-state lithium-sulfur batteries (ASSLSBs) are promising next-generation battery technologies with a high energy density and excellent safety. Because of the insulating nature of sulfur/Li2S, conventional cathode designs focus on developing porous hosts with high electronic conductivities such as porous carbon. However, carbon hosts boost the decomposition of sulfide electrolytes and suffer from sulfur detachment due to their weak bonding with sulfur/Li2S, resulting in capacity decays. Herein, we propose a counterintuitive design concept of host materials in which nonconductive polar mesoporous hosts can enhance the cycling life of ASSLSBs through mitigating the decomposition of adjacent electrolytes and bonding sulfur/Li2S steadily to avoid detachment. By using a mesoporous SiO2 host filled with 70 wt % sulfur as the cathode, we demonstrate steady cycling in ASSLSBs with a capacity reversibility of 95.1% in the initial cycle and a discharge capacity of 1446 mAh/g after 500 cycles at C/5 based on the mass of sulfur.

2.
Chem Soc Rev ; 52(6): 2145-2192, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36799134

RESUMEN

Magnesium (Mg) has many unique properties suitable for applications in the fields of energy conversion and storage. These fields presently rely on noble metals for efficient performance. However, among other challenges, noble metals have low natural abundance, which undermines their sustainability. Mg has a high negative standard reduction potential and a unique crystal structure, and its low melting point at 650 °C makes it a good candidate to replace or supplement numerous other metals in various energy applications. These attractive features are particularly helpful for improving the properties and limits of materials in energy systems. However, knowledge of Mg and its practical uses is still limited, despite recent studies which have reported Mg's key roles in synthesizing new structures and modifying the chemical properties of materials. At present, information about Mg chemistry has been rather scattered without any organized report. The present review highlights the chemistry of Mg and its uses in energy applications such as electrocatalysis, photocatalysis, and secondary batteries, among others. Future perspectives on the development of Mg-based materials are further discussed to identify the challenges that need to be addressed.

3.
Chemistry ; 22(13): 4422-30, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26918287

RESUMEN

Nanostructured NiCo2O4 is directly grown on the surface of three-dimensional graphene-coated nickel foam (3D-GNF) by a facile electrodeposition technique and subsequent annealing. The resulting NiCo2O4 possesses a distinct flower or sheet morphology, tuned by potential or current variation electrodeposition, which are used as binder-free lithium-ion battery anodes for the first time. Both samples exhibit high lithium storage capacity, profiting from the unique binder-free electrode structures. The flower-type NiCo2O4 demonstrates high reversible discharge capacity (1459 mAh g(-1) at 200 mA g(-1)) and excellent cyclability with around 71% retention of the reversible capacity after 60 cycles, which are superior to the sheet-type NiCo2O4. Such superb performance can be attributed to high volume utilization efficiency with unique morphological character, a well-preserved connection between the active materials and the current collector, a short lithium-ion diffusion path, and fast electrolyte transfer in the binder-free NiCo2O4 coated 3D graphene structure. The simple preparation process and easily controllable morphology make the binder-free NiCo2O4/3D-GNF hybrid a potential material for commercial applications.

4.
Langmuir ; 32(18): 4415-23, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27082026

RESUMEN

A binder-free and solvent-free pencil-trace electrode with intercalated clay particles (mainly SiO2) is prepared via a simple pencil-drawing process on grinded Cu substrate with rough surface and evaluated as an anode material for lithium-ion battery. The pencil-trace electrode exhibits a high reversible capacity of 672 mA h g(-1) at 100 mA g(-1) after 100 cycles, which can be attributed to the unique multilayered graphene particles with lateral size of few micrometers and the formation of LixSi alloys generated by interaction between Li(+) and an active Si produced in the electrochemical reduction of nano-SiO2 in the clay particles between the multilayered graphene particles. The multilayered graphene obtained by this process consists of 1 up to 20 and occasionally up to 50 sheets and thus can not only help accommodating the volume change and alleviating the structural strain during Li ion insertion and extraction but also allow rapid access of Li ions during charge-discharge cycling. Drawing with a pencil on grinded Cu substrate is not only very simple but also cost-effective and highly scalable, easily establishing graphitic circuitry through a solvent-free and binder-free approach.

5.
J Am Chem Soc ; 137(9): 3165-8, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25714509

RESUMEN

It has been long thought that Fe-N-C structure, where Fe is bonded with an electronegative heteroatom N, plays a key role as nonprecious metal catalyst for oxygen reduction reaction (ORR) in fuel cells. However, electrocatalytic activity of Fe bonded with electropositive heteroatom P has never been considered for ORR. Herein we report the electrocatalytic activity for ORR of new Fe-P-C.

6.
Chemistry ; 21(45): 15919-23, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26387978

RESUMEN

Novel steric bulky hole transporting materials (HTMs) with two or four N,N-di(4-methoxyphenyl)aminophenyl units have been synthesized. When the EtheneTTPA was used as a hole transporting material in perovskite solar cell, the power conversion efficiency afforded 12.77 % under AM 1.5 G illumination, which is comparable to the widely used spiro-OMeTAD based solar cell (13.28 %).

7.
Langmuir ; 31(20): 5676-83, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25942431

RESUMEN

In recent years, graphene-based materials have been in the forefront as electrode material for electrochemical energy generation and storage. Despite this prevalent interest, synthesis procedures have not attained three important efficiency requirements, that is, cost, energy, and eco-friendliness. In this regard, in the present work, graphene nanoplatelets with selectively functionalized edges (XGnPs) are prepared through a simple, eco-friendly and efficient method, which involves ball milling of graphite in the presence of hydrogen (H2), bromine (Br2), and iodine (I2). The resultant HGnP, BrGnP, and IGnP reveal significant exfoliation of graphite layers, as evidenced by high BET surface area of 414, 595, and 772 m(2) g(-1), respectively, in addition to incorporation of H, Br, and I along with other oxygen-containing functional groups at the graphitic edges. The BrGnP and IGnP are also found to contain 4.12 and 2.20 at % of Br and I, respectively in the graphene framework. When tested as supercapacitor electrode, all XGnPs show excellent electrochemical performance in terms of specific capacitance and durability at high current density and long-term operation. Among XGnPs, IGnP delivers superior performance of 172 F g(-1) at 1 A g(-1) compared with 150 F g(-1) for BrGnP and 75 F g(-1) for HGnP because the large surface area and high surface functionality in the IGnP give rise to the outstanding capacitive performance. Moreover, all XGnPs show excellent retention of capacitance at high current density of 10 A g(-1) and for long-term operation up to 1000 charge-discharge cycles.

8.
Nanotechnology ; 26(11): 115601, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25706065

RESUMEN

New halogen/nitrogen dual-doped graphenes (X/N-G) with thermally tunable doping levels are synthesized via the thermal reduction of graphite oxide (GO) with stepwise-pyrolyzed ionic liquids. The doping process of halogen and nitrogen into the graphene lattice proceeds via substitutional or covalent bonding through the physisorption or chemisorption of in situ pyrolyzed dopant precursors. The doping process is performed by heating to 300-400 °C of ionic liquid, and the chemically assisted reduction of GO is facilitated by ionic iodine, resulting in I/N-G materials possessing about three and two orders of magnitude higher conductivity (∼22,200 S m(-1)) and charge carrier density (∼10(21) cm(-3)), compared to those of thermally reduced GO. The thermally tunable doping levels of halogen in X/N-G significantly increase the conductivity of doped graphene to ∼27,800 S m(-1).

9.
Small ; 10(13): 2625-36, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-24664643

RESUMEN

Herein, a unique approach to dispose of human hair by pyrolizing it in a regulated environment is presented, yielding highly porous, conductive hair carbons with heteroatoms and high surface area. α-keratin in the protein network of hair serves as a precursor for the heteroatoms and carbon. The carbon framework is ingrained with heteroatoms such as nitrogen and sulfur, which otherwise are incorporated externally through energy-intensive, hazardous, chemical reactions using proper organic precursors. This judicious transformation of organic-rich waste not only addresses the disposal issue, but also generates valuable functional carbon materials from the discard. This unique synthesis strategy involving moderate activation and further graphitization enhances the electrical conductivity, while still maintaining the precious heteroatoms. The effect of temperature on the structural and functional properties is studied, and all the as-obtained carbons are applied as metal-free catalysts for the oxygen reduction reaction (ORR). Carbon graphitized at 900 °C emerges as a superior ORR electrocatalyst with excellent electrocatalytic performance, high selectivity, and long durability, demonstrating that hair carbon can be a promising alternative for costly Pt-based electrocatalysts in fuel cells. The ORR performance can be discussed in terms of heteroatom doping, surface properties, and electrical conductivity of the resulting porous hair carbon materials.


Asunto(s)
Carbono/química , Cabello/química , Humanos , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Propiedades de Superficie
10.
Acc Chem Res ; 46(7): 1397-406, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23270494

RESUMEN

Nanostructured porous carbon materials have diverse applications including sorbents, catalyst supports for fuel cells, electrode materials for capacitors, and hydrogen storage systems. When these materials have hierarchical porosity, interconnected pores of different dimensions, their potential application is increased. Hierarchical nanostructured carbons (HNCs) that contain 3D-interconnected macroporous/mesoporous and mesoporous/microporous structures have enhanced properties compared with single-sized porous carbon materials, because they have improved mass transport through the macropores/mesopores and enhanced selectivity and increased specific surface area on the level of fine pore systems through mesopores/micropores. The HNCs with macro/mesoporosity are of particular interest because chemists can tailor specific applications through controllable synthesis of HNCs with designed nanostructures. An efficient and commonly used technique for creating HNCs is "nanocasting", a technique that first involves the creation of a sacrificial silica template with hierarchical porous nanostructure and then the impregnation of the silica template with an appropriate carbon source. This is followed by carbonization of the filled carbon precursor, and subsequent removal of the silica template. The resulting HNC is an inverse replica of its parent hierarchical nanostructured silica (HNS). Through such nanocasting, scientists can create different HNC frameworks with tailored pore structures and narrow pore size distribution. Generally, HNSs with specific structure and 3D-interconnected porosity are needed to fabricate HNCs using the nanocasting strategy. However, how can we fabricate a HNS framework with tailored structure and hierarchical porosity of meso-macropores? This Account reports on our recent work in the development of novel HNCs and their interesting applications. We have explored a series of strategies to address the challenges in synthesis of HNSs and HNCs. Through careful control of experimental parameters, we found we could readily create new HNSs and HNCs with tailored structure and hierarchical porosity. In this Account, we describe the applications of the HNCs in low-temperature fuel cells, in Li ion batteries, in quantum-dot-sensitized solar cells (QDSSCs) and as hydrogen storage materials. Fuel cell and QDSSC polarization performance data reveal that both the ordered HNC and spherical HNC with uniform macro- and mesoporosity demonstrate superior catalyst support effect and considerably enhanced photovoltaic performance due to their incredible structural characteristics. For hydrogen and lithium storage applications, primary experimental results show that spherical HNCs with uniform macroporous core/mesoporous shell and ordered HNC are highly beneficial in terms of a high hydrogen (or Li) uptake, good rate capability and excellent cycling retainability. These data suggest that the innovative HNCs with tailored nanostructure may find promising applications in the rapid and efficient storage of hydrogen (or Li).

11.
Langmuir ; 30(1): 318-24, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24345084

RESUMEN

Nitrogen-doped turbostratic carbon nanoparticles (NPs) are prepared using fast single-step flame synthesis by directly burning acetonitrile in air atmosphere and investigated as an anode material for lithium-ion batteries. The as-prepared N-doped carbon NPs show excellent Li-ion stoarage properties with initial discharge capacity of 596 mA h g(-1), which is 17% more than that shown by the corresponding undoped carbon NPs synthesized by identical process with acetone as carbon precursor and also much higher than that of commercial graphite anode. Further analysis shows that the charge-discharge process of N-doped carbon is highly stable and reversible not only at high current density but also over 100 cycles, retaining 71% of initial discharge capacity. Electrochemical impedance spectroscopy also shows that N-doped carbon has better conductivity for charge and ions than that of undoped carbon. The high specific capacity and very stable cyclic performance are attributed to large number of turbostratic defects and N and associated increased O content in the flame-synthesized N-doped carbon. To the best of our knowledge, this is the first report which demonstrates single-step, direct flame synthesis of N-doped turbostratic carbon NPs and their application as a potential anode material with high capacity and superior battery performance. The method is extremely simple, low cost, energy efficient, very effective, and can be easily scaled up for large scale production.

12.
Int J Biol Macromol ; 264(Pt 2): 130617, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447829

RESUMEN

Local antibiotic application might mitigate the burgeoning problem of rapid emergence of antibiotic resistance in pathogenic microbes. To accomplish this, delivery systems must be engineered. Hydrogels have a wide range of physicochemical properties and can mimic the extracellular matrix, rendering them promising materials for local antibacterial agent application. Here, we synthesized antibacterial silicon (Si)-based nickel (Ni) nanoflowers (Si@Ni) and encapsulated them in gelatin methacryloyl (GelMA) using microfluidic and photo-crosslink technology, constructing uniform micro-sized hydrogel spheres (Si@Ni-GelMA). Si@Ni and Si@Ni-GelMA were characterized using X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Injectable Si@Ni-GelMA exhibited excellent antibacterial activities owing to the antibiotic effect of Ni against Pseudomonas aeruginosa, Klebsiella pneumoniae, and methicillin-resistant Staphylococcus aureus, while showing negligible cytotoxicity. Therefore, the Si@Ni-GelMA system can be used as drug carriers owing to their injectability, visible light-mediated crosslinking, degradation, biosafety, and superior antibacterial properties.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Gelatina/química , Materiales Biocompatibles/química , Silicio , Níquel , Microesferas , Hidrogeles/química , Antibacterianos/farmacología , Metacrilatos/química , Ingeniería de Tejidos
13.
Langmuir ; 29(22): 6754-61, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23688326

RESUMEN

Rod-shaped ordered mesoporous carbons (OMCs) with different lengths, prepared by replication method using the corresponding size-tunable SBA-15 silicas with the same rodlike morphology as templates, are explored as anode material for Li-ion battery. All of the as-synthesized OMCs exhibit much higher Li storage capacity and better cyclability along with comparable rate capability as compared with commercial graphite. Particularly, the OMC-3 with the shortest length demonstrates the highest reversible discharge capacity of 1012 mAh g(-1) at 100 mA g(-1) and better cyclability with 86.6% retention of initial capacity after 100 cycles. Although the Coulombic efficiencies of all the OMCs are relatively low at the beginning, they improve promptly and after 10 cycles reach the level comparable to commercial graphite. Based on their specific capacity, cycle efficiency, and rate capability, the OMC-3 outperforms considerably its carbon peers, OMC-1 and OMC-2 with longer length. This behavior is mainly attributed to higher specific surface area, which provides more active sites for Li adsorption and storage along with the larger mesopore volume and shorter mesopore channels, which facilitate fast Li ion diffusion and electrolyte transport. The enhancement in reversible Li storage performance with decrease in the channel length is also supported by low solid electrolyte interphase resistance, contact resistance, and Warburg impedance in electrochemical impedance spectroscopy.

14.
Adv Sci (Weinh) ; 10(7): e2205690, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36638252

RESUMEN

Crystal structures determine material properties, suggesting that crystal phase transformations have the potential for application in a variety of systems and devices. Phase transitions are more likely to occur in smaller crystals; however, in quantum-sized semiconductor nanocrystals, the microscopic mechanisms by which phase transitions occur are not well understood. Herein, the phase transformation of 2D CdSe quantum nanosheets caused by off-stoichiometry is revealed, and the progress of the transformation is directly observed by in situ transmission electron microscopy. The initial hexagonal wurtzite-CdSe nanosheets with atomically uniform thickness are transformed into cubic zinc blende-CdSe nanosheets. A combined experimental and theoretical study reveals that electron-beam irradiation can change the stoichiometry of the nanosheets, thereby triggering phase transformation. The loss of Se atoms induces the reconstruction of surface atoms, driving the transformation from wurtzite-CdSe(11 2 ¯ $\bar{2}$ 0) to zinc blende-CdSe(001) 2D nanocrystals. Furthermore, during the phase transformation, unconventional dynamic phenomena occur, including domain separation. This study contributes to the fundamental understanding of the phase transformations in 2D quantum-sized semiconductor nanocrystals.

15.
ACS Nano ; 17(14): 13734-13745, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37399231

RESUMEN

Elucidating the water-induced degradation mechanism of quantum-sized semiconductor nanocrystals is an important prerequisite for their practical application because they are vulnerable to moisture compared to their bulk counterparts. In-situ liquid-phase transmission electron microscopy is a desired method for studying nanocrystal degradation, and it has recently gained technical advancement. Herein, the moisture-induced degradation of semiconductor nanocrystals is investigated using graphene double-liquid-layer cells that can control the initiation of reactions. Crystalline and noncrystalline domains of quantum-sized CdS nanorods are clearly distinguished during their decomposition with atomic-scale imaging capability of the developed liquid cells. The results reveal that the decomposition process is mediated by the involvement of the amorphous-phase formation, which is different from conventional nanocrystal etching. The reaction can proceed without the electron beam, suggesting that the amorphous-phase-mediated decomposition is induced by water. Our study discloses unexplored aspects of moisture-induced deformation pathways of semiconductor nanocrystals, involving amorphous intermediates.

16.
J Am Chem Soc ; 134(39): 16127-30, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-22966761

RESUMEN

Phosphorus-doped ordered mesoporous carbons (POMCs) with different lengths were synthesized using a metal-free nanocasting method of SBA-15 mesoporous silica with different sizes as template and triphenylphosphine and phenol as phosphorus and carbon sources, respectively. The resultant POMC with a small amount of P doping is demonstrated as a metal-free electrode with excellent electrocatalytic activity for oxygen reduction reaction (ORR), coupled with much enhanced stability and alcohol tolerance compared to those of platinum via four-electron pathway in alkaline medium. Interestingly, the POMC with short channel length is found to have superior electrochemical performances compared to those with longer sizes.

17.
J Nanosci Nanotechnol ; 12(1): 356-60, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22523986

RESUMEN

A new approach is described to produce an efficient electrode material for biofuel cells using flexible carbon cloth (FCC) and hollow core-mesoporous shell carbon (HCMSC) nanospheres as bio-anode materials. The bio-electrochemical activity of glucose oxidase (GOx) enzyme adsorbed on this bio-anode was evaluated, with the maximum anodic current density varying from 80 microA cm(-2) to 180 microA cm-2 for glucose concentrations up to 5.0 mmol L(-1) for the FCC modified electrode with HCMSCs. The open circuit cell voltage was E(0) = 380 mV, and the catalytic electro-oxidation current of glucose reached 0.1 mA cm(-2) at 0.0 V versus Ag/AgCl. This new system employing HCMSC-based FCC is promising toward novel bio-anodes for biofuel cells using glucose as a fuel.


Asunto(s)
Fuentes de Energía Bioeléctrica , Biocombustibles , Electrodos , Glucosa Oxidasa/química , Glucosa/química , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Módulo de Elasticidad , Diseño de Equipo , Análisis de Falla de Equipo , Tamaño de la Partícula , Textiles
18.
Pharmaceutics ; 14(2)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35214001

RESUMEN

Compared to most of nano-sized particles, core-shell-structured nanoflowers have received great attention as bioactive materials because of their high surface area with the flower-like structures. In this study, core-shell-structured Si-based NiO nanoflowers, Si@NiO, were prepared by a modified chemical bath deposition method followed by thermal reduction. The crystal morphology and basic structure of the composites were characterized by powder X-ray diffraction (PXRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), specific surface area (BET) and porosity analysis (BJT), and inductively coupled plasma optical emission spectrometry (ICP-OES). The electrochemical properties of the Si@NiO nanoflowers were examined through the redox reaction of ascorbic acid with the metal ions present on the surface of the core-shell nanoflowers. This reaction favored the formation of reactive oxygen species. The Si@NiO nanoflowers showed excellent anticancer activity and low cytotoxicity toward the human breast cancer cell line (MCF-7) and mouse embryonic fibroblasts (MEFs), respectively, demonstrating that the anticancer activities of the Si@NiO nanoflowers were primarily derived from the oxidative capacity of the metal ions on the surface, rather than from the released metal ions. Thus, this proves that Si-based NiO nanoflowers can act as a promising candidate for therapeutic applications.

19.
ACS Appl Mater Interfaces ; 14(22): 25246-25256, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35609281

RESUMEN

Over the last years, the development of highly active and durable Pt-based electrocatalysts has been identified as the main target for a large-scale industrial application of fuel cells. In this work, we make a significant step ahead in this direction by preparing a high-performance electrocatalyst and suggesting new structure-activity design concepts which could shape the future of oxygen reduction reaction (ORR) catalyst design. For this, we present a new one-dimensional nanowire catalyst consisting of a L10 ordered intermetallic PtCo alloy core and compressively strained high-index facets in the Pt-rich shell. We find the nanoscale PtCo catalyst to provide an excellent turnover for the ORR and hydrogen evolution reaction (HER), which we explain from high-resolution transmission electron microscopy and density functional theory calculations to be due to the high ratio of Pt(221) facets. These facets include highly active ORR and HER sites surprisingly on the terraces which are activated by a combination of sub-surface Co-induced high Miller index-related strain and oxygen coverage on the step sites. The low dimensionality of the catalyst provides a cost-efficient use of Pt. In addition, the high catalytic activity and durability are found during both half-cell and proton exchange membrane fuel cell (PEMFC) operations for both ORR and HER. We believe the revealed design concepts for generating active sites on the Pt-based catalyst can open up a new pathway toward the development of high-performance cathode catalysts for PEMFCs and other catalytic systems.

20.
Int J Biol Macromol ; 208: 149-158, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35304194

RESUMEN

Bacterial infections have become a severe threat to human health and antibiotics have been developed to treat them. However, extensive use of antibiotics has led to multidrug-resistant bacteria and reduction of their therapeutic effects. An efficient solution may be localized application of antibiotics using a drug delivery system. For clinical application, they need to be biodegradable and should offer a prolonged antibacterial effect. In this study, a new injectable and visible-light-crosslinked hyaluronic acid (HA) hydrogel loaded with silicon (Si)-based nickel oxide (NiO) nanoflowers (Si@NiO) as an antibacterial scaffold was developed. Si@NiO nanoflowers were synthesized using chemical bath deposition before encapsulating them in the HA hydrogel under a mild visible-light-crosslinking conditions to generate a Si@NiO-hydrogel. Si@NiO synthesis was confirmed using scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. As-prepared Si@NiO-hydrogel exhibited enhanced mechanical properties compared to a control bare hydrogel sample. Moreover, Si@NiO-hydrogel exhibits excellent antibacterial properties against three bacterial strains (P. aeruginosa, K. pneumoniae, and methicillin-resistant Staphylococcus aureus (>99.9% bactericidal rate)) and negligible cytotoxicity toward mouse embryonic fibroblasts. Therefore, Si@NiO-hydrogel has the potential for use in tissue engineering and biomedical applications owing to its injectability, visible-light crosslink ability, degradability, biosafety, and superior antibacterial property.


Asunto(s)
Hidrogeles , Staphylococcus aureus Resistente a Meticilina , Animales , Antibacterianos/farmacología , Fibroblastos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Luz , Ratones , Níquel , Pseudomonas aeruginosa , Silicio , Dióxido de Silicio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA