Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(D1): D1490-D1502, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37819041

RESUMEN

The phenotypic and regulatory variability of drug transporter (DT) are vital for the understanding of drug responses, drug-drug interactions, multidrug resistances, and so on. The ADME property of a drug is collectively determined by multiple types of variability, such as: microbiota influence (MBI), transcriptional regulation (TSR), epigenetics regulation (EGR), exogenous modulation (EGM) and post-translational modification (PTM). However, no database has yet been available to comprehensively describe these valuable variabilities of DTs. In this study, a major update of VARIDT was therefore conducted, which gave 2072 MBIs, 10 610 TSRs, 46 748 EGRs, 12 209 EGMs and 10 255 PTMs. These variability data were closely related to the transportation of 585 approved and 301 clinical trial drugs for treating 572 diseases. Moreover, the majority of the DTs in this database were found with multiple variabilities, which allowed a collective consideration in determining the ADME properties of a drug. All in all, VARIDT 3.0 is expected to be a popular data repository that could become an essential complement to existing pharmaceutical databases, and is freely accessible without any login requirement at: https://idrblab.org/varidt/.


Asunto(s)
Bases de Datos de Proteínas , Proteínas de Transporte de Membrana , Preparaciones Farmacéuticas , Epigénesis Genética , Regulación de la Expresión Génica , Procesamiento Proteico-Postraduccional , Preparaciones Farmacéuticas/metabolismo
2.
Cancer Immunol Immunother ; 73(5): 82, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38554200

RESUMEN

BACKGROUND: Claudin 18.2 (CLDN18.2) is a highly anticipated target for solid tumor therapy, especially in advanced gastric carcinoma and pancreatic carcinoma. The T cell engager targeting CLDN18.2 represents a compelling strategy for enhancing anti-cancer efficacy. METHODS: Based on the in-house screened anti-CLDN18.2 VHH, we have developed a novel tri-specific T cell engager targeting CLDN18.2 for gastric and pancreatic cancer immunotherapy. This tri-specific antibody was designed with binding to CLDN18.2, human serum albumin (HSA) and CD3 on T cells. RESULTS: The DR30318 demonstrated binding affinity to CLDN18.2, HSA and CD3, and exhibited T cell-dependent cellular cytotoxicity (TDCC) activity in vitro. Pharmacokinetic analysis revealed a half-life of 22.2-28.6 h in rodents and 41.8 h in cynomolgus monkeys, respectively. The administration of DR30318 resulted in a slight increase in the levels of IL-6 and C-reactive protein (CRP) in cynomolgus monkeys. Furthermore, after incubation with human PBMCs and CLDN18.2 expressing cells, DR30318 induced TDCC activity and the production of interleukin-6 (IL-6) and interferon-gamma (IFN-γ). Notably, DR30318 demonstrated significant tumor suppression effects on gastric cancer xenograft models NUGC4/hCLDN18.2 and pancreatic cancer xenograft model BxPC3/hCLDN18.2 without affecting the body weight of mice.


Asunto(s)
Neoplasias Pancreáticas , Neoplasias Gástricas , Humanos , Ratones , Animales , Linfocitos T , Interleucina-6 , Macaca fascicularis/metabolismo , Neoplasias Pancreáticas/terapia , Neoplasias Gástricas/patología , Inmunoterapia , Claudinas/metabolismo
3.
Drug Metab Dispos ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960734

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most malignant tumors in the world. Inadequate efficacy of 5-fluorouracil (5-FU) on HCC could be related to low expression of human organic anion transporter 2 (OAT2). However, the knowledge of down-regulation of OAT2 in HCC remains limited. We explored the underlying mechanism focusing on protein expression regulation and attempted to design a strategy to sensitize HCC cells to 5-FU. In this study, we revealed that 1 bp to 300 bp region of OAT2 mRNA 3' untranslated region (UTR) reduced its protein expression and uptake activity in Li-7 and PLC/PRF/5 cells. Mechanistically, it was demonstrated that staphylococcal nuclease and Tudor domain containing 1 (SND1) bound at 1 bp to 300 bp region of OAT2 mRNA 3' UTR, leading to a decrease in OAT2 protein expression. Enrichment analysis results indicated reduction of OAT2 might be mediated by translational inhibition. Furthermore, the knockdown of SND1 up-regulated OAT2 protein expression and uptake activity. Based on it, decreasing SND1 expression enhanced 5-FU-caused G1/S phase arrest in Li-7 and PLC/PRF/5 cells, resulting in suppression of cell proliferation. Besides, the knockdown of SND1 augmented the inhibitory effect of 5-FU on PLC/PRF/5 xenograft tumor growth in vivo by increasing OAT2 protein expression and accumulation of 5-FU in the tumor. Collectively, a combination of inhibition of SND1 with 5-FU might be a potential strategy to sensitize HCC cells to 5-FU from the perspective of restoring OAT2 protein level. Significance Statement We investigated the regulatory mechanism of OAT2 protein expression in HCC cells and designed a strategy to sensitize them to 5-FU (OAT2 substrate) via restoring OAT2 protein level. It found that SND1, an RNA binding protein, regulated OAT2 protein expression by interacting with OAT2 mRNA 3' UTR 1-300bp region. Through decreasing SND1, the anti-tumor effect of 5-FU on HCC was enhanced in vitro and in vivo, indicating that SND1 could be a potential target for sensitizing HCC cells to 5-FU.

4.
Nucleic Acids Res ; 50(D1): D1417-D1431, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34747471

RESUMEN

The structural variability data of drug transporter (DT) are key for research on precision medicine and rational drug use. However, these valuable data are not sufficiently covered by the available databases. In this study, a major update of VARIDT (a database previously constructed to provide DTs' variability data) was thus described. First, the experimentally resolved structures of all DTs reported in the original VARIDT were discovered from PubMed and Protein Data Bank. Second, the structural variability data of each DT were collected by literature review, which included: (a) mutation-induced spatial variations in folded state, (b) difference among DT structures of human and model organisms, (c) outward/inward-facing DT conformations and (d) xenobiotics-driven alterations in the 3D complexes. Third, for those DTs without experimentally resolved structural variabilities, homology modeling was further applied as well-established protocol to enrich such valuable data. As a result, 145 mutation-induced spatial variations of 42 DTs, 1622 inter-species structures originating from 292 DTs, 118 outward/inward-facing conformations belonging to 59 DTs, and 822 xenobiotics-regulated structures in complex with 57 DTs were updated to VARIDT (https://idrblab.org/varidt/ and http://varidt.idrblab.net/). All in all, the newly collected structural variabilities will be indispensable for explaining drug sensitivity/selectivity, bridging preclinical research with clinical trial, revealing the mechanism underlying drug-drug interaction, and so on.


Asunto(s)
Transporte Biológico/genética , Bases de Datos Factuales , Bases de Datos Farmacéuticas , Humanos , Mutación/genética , Relación Estructura-Actividad , Xenobióticos/química , Xenobióticos/clasificación , Xenobióticos/uso terapéutico
5.
Pharm Res ; 40(9): 2177-2194, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37610618

RESUMEN

PURPOSE: 5-fluorouracil (5-FU) and its prodrug capecitabine are commonly prescribed anti-tumor medications. We aimed to establish physiologically based pharmacokinetic (PBPK) models of capecitabine-metabolites and 5-FU-metabolites to describe their pharmacokinetics in tumor and plasma of cancer patients with liver impairment. METHODS: Models including the cancer compartment were developed in PK-Sim® and MoBi® and evaluated by R programming language with 25 oral capecitabine and 18 intravenous 5-FU studies for cancer patients with and without liver impairment. RESULTS: The PBPK models were constructed successfully as most simulated Cmax and AUClast were within two-fold error of observed values. The simulated alterations of tumor 5-FU Cmax and AUClast in cancer patients with severe liver injury compared with normal liver function were 1.956 and 3.676 after oral administration of capecitabine, but no significant alteration was observed after intravenous injection of 5-FU. Besides, 5-FU concentration in tumor tissue increases with higher tumor blood flow but not tumor size. Sensitivity analysis revealed that dihydropyrimidine dehydrogenase (DPD) and other metabolic enzymes' activity, capecitabine intestinal permeability and plasma protein scale factor played a vital role in tumor and plasma 5-FU pharmacokinetics. CONCLUSIONS: PBPK model prediction suggests no dosage adaption of capecitabine or 5-FU is required for cancer patients with hepatic impairment but it would be reduced when the toxic reaction is observed. Furthermore, tumor blood flow rate rather than tumor size is critical for 5-FU concentration in tumor. In summary, these models could predict pharmacokinetics of 5-FU in tumor in cancer patients with varying characteristics in different scenarios.


Asunto(s)
Antimetabolitos Antineoplásicos , Neoplasias , Humanos , Capecitabina/uso terapéutico , Desoxicitidina , Fluorouracilo , Neoplasias/tratamiento farmacológico
6.
Analyst ; 148(3): 556-561, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36562478

RESUMEN

A novel method for detecting miRNA has been developed using a combination of duplex-specific nuclease signal amplification (DSNSA) and a catalytic hairpin assembly (CHA). In this work, a biotinylated trigger release (BTR) probe with a biotin group at the 3'-end and a CHA reaction sequence trigger as an initiator (catalyst I) at the 5'-end was designed to hybridize target miRNA. The DSN enzyme was introduced to initiate the DSNSA. The miRNA was released to consume more BTR probes and amplify the signals. Subsequently, streptavidin-coated magnetic beads (SA-MBs) were added to the DSNSA reaction solution to remove excess BTR probes that did not hybridize with miRNA, which would then separate BTR probes and catalyst-I, to ensure detection with high selectivity and sensitivity. The catalyst-I remaining in the solution could trigger the CHA reaction to enable signal amplification in the second step. The developed method exhibits a sensitive detection limit and excellent selectivity in identifying a high sequence homology among family members.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Técnicas Biosensibles/métodos , MicroARNs/genética , Catálisis , Biotina , Estreptavidina , Endonucleasas , Límite de Detección
7.
Nucleic Acids Res ; 49(D1): D1233-D1243, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33045737

RESUMEN

Drug-metabolizing enzymes (DMEs) are critical determinant of drug safety and efficacy, and the interactome of DMEs has attracted extensive attention. There are 3 major interaction types in an interactome: microbiome-DME interaction (MICBIO), xenobiotics-DME interaction (XEOTIC) and host protein-DME interaction (HOSPPI). The interaction data of each type are essential for drug metabolism, and the collective consideration of multiple types has implication for the future practice of precision medicine. However, no database was designed to systematically provide the data of all types of DME interactions. Here, a database of the Interactome of Drug-Metabolizing Enzymes (INTEDE) was therefore constructed to offer these interaction data. First, 1047 unique DMEs (448 host and 599 microbial) were confirmed, for the first time, using their metabolizing drugs. Second, for these newly confirmed DMEs, all types of their interactions (3359 MICBIOs between 225 microbial species and 185 DMEs; 47 778 XEOTICs between 4150 xenobiotics and 501 DMEs; 7849 HOSPPIs between 565 human proteins and 566 DMEs) were comprehensively collected and then provided, which enabled the crosstalk analysis among multiple types. Because of the huge amount of accumulated data, the INTEDE made it possible to generalize key features for revealing disease etiology and optimizing clinical treatment. INTEDE is freely accessible at: https://idrblab.org/intede/.


Asunto(s)
Bases de Datos Factuales , Drogas en Investigación/metabolismo , Enzimas/metabolismo , Inactivación Metabólica/genética , Medicamentos bajo Prescripción/metabolismo , Procesamiento Proteico-Postraduccional , Xenobióticos/metabolismo , Bacterias/enzimología , Metilación de ADN , Enzimas/clasificación , Hongos/enzimología , Histonas/genética , Histonas/metabolismo , Humanos , Internet , Tasa de Depuración Metabólica , Microbiota/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Programas Informáticos
8.
Biopharm Drug Dispos ; 44(2): 165-174, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36649539

RESUMEN

Osimertinib is a highly selective third-generation irreversible inhibitor of epidermal growth factor receptor mutant, which can be utilized to treat non-small cell lung cancer. As the substrate of cytochrome P450 enzyme, it is mainly metabolized by the CYP3A enzyme in humans. Among the metabolites produced by osimertinib, AZ5104, and AZ7550, which are demethylated that is most vital. Nowadays, deuteration is a new design approach for several drugs. This popular strategy is deemed to improve the pharmacokinetic characteristics of the original drugs. Therefore, in this study the metabolism profiles of osimertinib and its deuterated compound (osimertinib-d3) in liver microsomes and human recombinant cytochrome P450 isoenzymes and the pharmacokinetics in rats and humans were compared. After deuteration, its kinetic isotope effect greatly inhibited the metabolic pathway that produces AZ5104. The plasma concentration of the key metabolite AZ5104 of osimertinib-d3 in rats and humans decreased significantly compared with that of the osimertinib. This phenomenon was consistent with the results of the metabolism studies in vitro. In addition, the in vivo results indicated that osimertinib-d3 had higher systemic exposure (AUC) and peak concentration (Cmax ) compared with the osimertinib in rats and human body.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Ratas , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Indoles , Acrilamidas/metabolismo , Acrilamidas/farmacología , Compuestos de Anilina/metabolismo , Compuestos de Anilina/farmacología , Microsomas Hepáticos/metabolismo
9.
Drug Metab Dispos ; 50(1): 76-85, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34426411

RESUMEN

With the rapid progress in pharmaceutical experiments and clinical investigations, extensive knowledge of drug transporters (DTs) has accumulated, which is valuable data for the understanding of drug metabolism and disposition. However, such data are largely dispersed in the literature, which hampers its utility and significantly limits its possibility for comprehensive analysis. A variety of databases have, therefore, been constructed to provide DT-related data, and they were reviewed in this study. First, several knowledge bases providing data regarding clinically important drugs and their corresponding transporters were discussed, which constituted the most important resources of DT-centered data. Second, some databases describing the general transporters and their functional families were reviewed. Third, various databases offering transporter information as part of their entire data collection were described. Finally, customized database functions that are available to facilitate DT-related research were discussed. This review provided an overview of the whole collection of DT-related databases, which might facilitate research on precision medicine and rational drug use. SIGNIFICANCE STATEMENT: A collection of well established databases related to drug transporters were comprehensively reviewed, which were organized according to their importance in drug absorption, distribution, metabolism, and excretion research. These databases could collectively contribute to the research on rational drug use.


Asunto(s)
Proteínas Portadoras/metabolismo , Bases de Datos Factuales , Bases de Datos Genéticas , Preparaciones Farmacéuticas/metabolismo , Farmacocinética , Animales , Proteínas Portadoras/genética , Humanos , Tasa de Depuración Metabólica , Distribución Tisular
10.
Chem Res Toxicol ; 35(3): 422-430, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35147423

RESUMEN

Hand-foot syndrome (HFS) is a major adverse reaction to capecitabine (CAP). The exact pathogenesis of this disease remains unclear. In this study, metabolomics combined with cell RNA sequencing was used to study the mechanisms of CAP-induced HFS. The murine model of HFS was constructed by intragastric administration of CAP or its metabolites. Quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assays were used to verify the mechanisms. Metabolomics showed the phosphatidylinositol signaling pathway and amino acid and fatty acid metabolism to be the major metabolic alterations related to the occurrence of HFS. Transcriptomics profiles further revealed that the cytokine-cytokine receptor interaction, IL17 signaling pathway, Toll-like receptor signaling pathway, arachidonic acid metabolism, MAPK signaling pathway, and JAK-STAT3 signaling pathway were the vital steps in skin toxicity induced by CAP or its metabolites. We also verified that the inflammation mechanisms were primarily mediated by the abnormal expression of interleukin (IL) 6 or IL8 and not exclusively by COX-2 overexpression. Finally, the P38 MAPK, NF-κB, and JAK-STAT3 signaling pathways, which mediate high levels of expression of IL6 or IL8, were identified as potential pathways underlying CAP-induced HFS.


Asunto(s)
Síndrome Mano-Pie , FN-kappa B , Animales , Capecitabina/efectos adversos , Síndrome Mano-Pie/etiología , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Ratones , FN-kappa B/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Pharmacol Res ; 177: 106101, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35104632

RESUMEN

Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the second leading cause of cancer-related deaths in the world. The downregulation of farnesoid X receptor (FXR) is frequently founded in CRC patients. The current study found that the decreased expression of FXR in colorectal cancer leads to disorders of bile acids (BAs) metabolism. The altered BAs profile shaped distinct intestinal flora and positively regulated secretory immunoglobulin A (sIgA). The dual regulation of BAs and sIgA enhanced adhesion and biofilm formation of enterotoxigenic Bacteroides fragilis (ETBF), which has a colorectal tumorigenesis effect. The abundance of ETBF increased significantly in intestinal mucosa of colitis-associated cancer (CAC) mice, and finally promoted the development of colorectal cancer. This study suggests that downregulation of FXR in CRC results in BAs dysregulation, and BAs have strong effects on sIgA and gut flora. The elevated BAs concentration and altered gut microbiome are risk factors for CRC.


Asunto(s)
Infecciones Bacterianas , Neoplasias Colorrectales , Animales , Bacteroides fragilis/metabolismo , Ácidos y Sales Biliares/metabolismo , Carcinogénesis , Transformación Celular Neoplásica , Regulación hacia Abajo , Humanos , Inmunoglobulina A Secretora/metabolismo , Ratones
12.
Nucleic Acids Res ; 48(D1): D1042-D1050, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31495872

RESUMEN

The absorption, distribution and excretion of drugs are largely determined by their transporters (DTs), the variability of which has thus attracted considerable attention. There are three aspects of variability: epigenetic regulation and genetic polymorphism, species/tissue/disease-specific DT abundances, and exogenous factors modulating DT activity. The variability data of each aspect are essential for clinical study, and a collective consideration among multiple aspects becomes crucial in precision medicine. However, no database is constructed to provide the comprehensive data of all aspects of DT variability. Herein, the Variability of Drug Transporter Database (VARIDT) was introduced to provide such data. First, 177 and 146 DTs were confirmed, for the first time, by the transporting drugs approved and in clinical/preclinical, respectively. Second, for the confirmed DTs, VARIDT comprehensively collected all aspects of their variability (23 947 DNA methylations, 7317 noncoding RNA/histone regulations, 1278 genetic polymorphisms, differential abundance profiles of 257 DTs in 21 781 patients/healthy individuals, expression of 245 DTs in 67 tissues of human/model organism, 1225 exogenous factors altering the activity of 148 DTs), which allowed mutual connection between any aspects. Due to huge amount of accumulated data, VARIDT made it possible to generalize characteristics to reveal disease etiology and optimize clinical treatment, and is freely accessible at: https://db.idrblab.org/varidt/ and http://varidt.idrblab.net/.

13.
Xenobiotica ; 51(5): 513-521, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33512253

RESUMEN

6-Hydroxykynurenic acid (6-HKA) is a nitrogen-containing phenolic acid compound in Ginkgo biloba leaves. The pharmacological activities of 6-HKA have been reported and shown that 6-HKA has the potential to become a therapeutic drug and may play an important role in the treatment of nervous system diseases. However, there are few studies on the drug metabolism and transport of 6-HKA. The aim of this study is to investigate the in vitro metabolism of 6-HKA and its interaction with multiple important drug transporters.The in vitro metabolism experiments in the present study demonstrate that 6-HKA might not undergo phase-I or phase-II metabolism in hepatic microsomes/S9 of rats. In addition, some drug transporters, including OAT1/3, OCT2, MDR1, OATP1B1, MATE1/2K and OCTN2, were investigated. The cellular uptake assays indicate that 6-HKA exhibits inhibition to the transport of classical substrates mediated by OAT3, OCT2, MATE2K and OCTN2 but has no significant effect on the transport of substrates mediated by MDR1, OAT1, OATP1B1 or MATE1. Further investigation of cellular accumulation assays shows that 6-HKA might be the substrate of OAT3, but not OCT2 or OCTN2. The bidirectional transport study suggests that 6-HKA is not a substrate of MDR1.The information about the in vitro metabolism of 6-HKA and the interaction between 6-HKA and some transporters will help us to better understand the pharmacokinetic properties of 6-HKA and provide reference for its pharmacodynamics, DDIs and drug-food interactions studies.


Asunto(s)
Ginkgo biloba , Microsomas Hepáticos , Animales , Transporte Biológico , Ácido Quinurénico/análogos & derivados , Extractos Vegetales , Ratas
14.
Mol Pharmacol ; 97(4): 259-266, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32005758

RESUMEN

Colorectal cancer (CRC) is known to be the third most common cancer disease and the fourth-leading cause of cancer-related deaths worldwide. Bile acid, especially deoxycholic acid and lithocholic acid, were revealed to play an important role during carcinogenesis of CRC. In this study, we found organic solute transporter ß (OSTß), an important subunit of a bile acid export transporter OSTα-OSTß, was noticeably downregulated in CRC. The decline of OSTß expression in CRC was determined by Western blot and real-time polymerase chain reaction (RT-PCR), whereas chromatin immunoprecipitation (ChIP) was used to evaluate the histone acetylation state at the OSTß promoter region in vivo and in vitro. CRC cell lines HT29 and HCT15 were treated with trichostation A (TSA) for the subsequent determination, including RT-PCR, small interfering RNA (siRNA) knockdown, ChIP, and dual-luciferase reporter gene assay, to find out which histone acetyltransferases and deacetylases exactly participated in regulation. We demonstrated that after TSA treatment, OSTß expression increased noticeably because of upregulated H3K27Ac state at OSTß promoter region. We found that stimulating the expression of p300 with CTB (Cholera Toxin B subunit, an activator of p300) and inhibiting p300 expression with C646 (an inhibitor of p300) or siRNA designed for p300 could control OSTß expression through modulating H3K27Ac state at OSTß promoter region. Therefore, downregulated expression of p300 in CRC may cause low expression of OSTß in CRC via epigenetic regulation. Generally, we revealed a novel epigenetic mechanism underlying OSTß repression in CRC, hoping this mechanism would help us to understand and inhibit carcinogenesis of CRC. SIGNIFICANCE STATEMENT: Organic solute transporter ß (OSTß) expression is lower in colon cancer tissues compared with adjacent normal tissues. We revealed the epigenetic mechanisms of it and proved that p300 controls OSTß expression through modulating H3K27Ac state at OSTß promoter region and hence causes low expression of OSTß in colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/genética , Proteína p300 Asociada a E1A/metabolismo , Epigénesis Genética , Histonas/metabolismo , Proteínas de Transporte de Membrana/genética , Acetilación/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Toxina del Cólera/farmacología , Neoplasias Colorrectales/patología , Regulación hacia Abajo/genética , Proteína p300 Asociada a E1A/antagonistas & inhibidores , Proteína p300 Asociada a E1A/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HT29 , Humanos , Ácidos Hidroxámicos/farmacología , Proteínas de Transporte de Membrana/metabolismo , Regiones Promotoras Genéticas/genética , ARN Interferente Pequeño/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
15.
Drug Metab Dispos ; 48(9): 759-768, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32601104

RESUMEN

Drug metabolism is a biotransformation process of drugs, catalyzed by drug-metabolizing enzymes (DMEs), including phase I DMEs and phase II DMEs. The aberrant expression of DMEs occurs in the different stages of cancer. It can contribute to the development of cancer and lead to individual variations in drug response by affecting the metabolic process of carcinogen and anticancer drugs. Apart from genetic polymorphisms, which we know the most about, current evidence indicates that epigenetic regulation is also central to the expression of DMEs. This review summarizes differentially expressed DMEs in cancer and related epigenetic changes, including DNA methylation, histone modification, and noncoding RNAs. Exploring the epigenetic regulation of differentially expressed DMEs can provide a basis for implementing individualized and rationalized medication. Meanwhile, it can promote the development of new biomarkers and targets for the diagnosis, treatment, and prognosis of cancer. SIGNIFICANCE STATEMENT: This review summarizes the aberrant expression of DMEs in cancer and the related epigenetic regulation of differentially expressed DMEs. Exploring the epigenetic regulatory mechanism of DMEs in cancer can help us to understand the role of DMEs in cancer progression and chemoresistance. Also, it provides a basis for developing new biomarkers and targets for the diagnosis, treatment, and prognosis of cancer.


Asunto(s)
Antineoplásicos/farmacocinética , Epigénesis Genética , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Metilación de ADN , Código de Histonas , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Medicina de Precisión/métodos , ARN no Traducido/metabolismo
16.
Toxicol Appl Pharmacol ; 401: 115079, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32497534

RESUMEN

Thioredoxin 1 (Trx1) and telomerase play key roles in the development and progression process of most tumors, and they both are promising drug therapy targets. We have, for the first time, discovered that Trx1 and telomerase had a dual-target synergistic effect. Based on that results, we designed a series of 6-dithio-2'-deoxyguanosine analogs (named as YLS00X) and verified whether they can inhibit Trx1 and telomerase simultaneously. TrxR1/Trx1 system activity and telomerase expression were significantly inhibited by 6-dithio-2'-deoxyguanosine analogs, especially YLS004. YLS004 can also cause ROS accumulation, and induce tumor cell apoptosis. The vitro antitumor activity of 6-dithio-2'-deoxyguanosine analogs using MTT assay on 11 different human cancer cells and found that human colon cancer cells(HCT116) and melanoma cells (A375) were the most sensitive cells to 6-dithio-2'-deoxyguanosine analogs treatment and vivo xenografts models also confirmed that. The serum biochemical parameters and multiple organs HE staining results of subacute experiments indicated that YLS004 might be mildly toxic to immune organs, including the thymus, spleen, and hematopoietic system. Besides, YLS004 was rapidly metabolized in the rats' blood. Our study revealed that YLS004, a Trx1 and telomerase inhibitor, has strong anti-tumor effects to colon cancer and melanoma cells and is a promising new candidate drug.


Asunto(s)
Desoxiguanosina/análogos & derivados , Desoxiguanosina/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Especies Reactivas de Oxígeno/agonistas , Telomerasa/antagonistas & inhibidores , Tiorredoxinas/antagonistas & inhibidores , Células A549 , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Células HCT116 , Células HT29 , Células Hep G2 , Humanos , Células K562 , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Telomerasa/metabolismo , Tiorredoxinas/metabolismo
17.
Pharmazie ; 75(9): 424-429, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32797767

RESUMEN

Flumatinib, indicated for the treatment of Philadelphia chromosome-positive chronic myeloid leukemia, is a structural analog of imatinib and has shown higher potency than imatinib as a BCR-ABL inhibitor. In this paper, the metabolic profile of flumatinib was studied. It was found that CYP3A4 and CYP2C8 were the main cytochrome P450 enzyme substyles catalyzing the metabolism of flumatinib, and CYP3A4 has a stronger metabolic ability for flumatinib than CYP2C8. Erythromycin, cyclosporine, and voriconazole can inhibit the metabolism of flumatinib in vitro. Accordingly, co-administration of erythromycin and cyclosporine with flumatinib increased the plasma concentration and the systemic exposure of flumatinib in rats, which indicated that lower doses should be considered in clinical practice.


Asunto(s)
Aminopiridinas/farmacocinética , Benzamidas/farmacocinética , Inhibidores del Citocromo P-450 CYP3A/farmacología , Inhibidores de Proteínas Quinasas/farmacocinética , Animales , Ciclosporina/farmacología , Interacciones Farmacológicas , Eritromicina/farmacología , Femenino , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Voriconazol/farmacología
18.
RNA Biol ; 16(7): 940-949, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30951404

RESUMEN

SLC47A2 encodes MATE 2-K in the kidney, which mediates the secretion of certain endogenous and exogenous compounds. SLC47A2 was dramatically repressed in patients with renal cell carcinoma (RCC), and a lower level of SLC47A2 might act as a negative prognostic marker, although the mechanism is not well understood. In this study, we aimed to investigate the mechanism via which SLC47A2 is downregulated in RCC. Based on the annotation information of the SLC47A2 locus available in the UCSC genome browser database, we identified a novel lncRNA, which is transcribed from the SLC47A2 locus and named it SANT1. Overexpression and knock-down assays were performed to investigate the effects of SANT1 on cis-regulation of SLC47A2. We verified the direct binding between SANT1 and SFPQ/E2F1/HDAC1 using the cross-linking and immunoprecipitation (CLIP) assay. Chromatin immunoprecipitation was performed to confirm the molecular mechanism via which SANT1 activates the transcription of the SLC47A2 coding region. We observed that SANT1 can cis-regulate its own genetic locus. In tumour-adjacent tissues, the SLC47A2 locus highly expresses SANT1, which can remove the regulatory SFPQ/E2F1/HDAC1 suppressor complex from the promoter region, thereby significantly increasing the levels of the H3K27ac modification and RNAPII binding. Owing to a low SANT1 level, the binding of this inhibitory complex in the promoter region is upregulated in RCC, which results in silencing of the SLC47A2 coding region. In conclusion, we identified a novel lncRNA and elucidated the mechanism via which it regulates SLC47A2 expression in RCC.


Asunto(s)
Carcinoma de Células Renales/genética , Factor de Transcripción E2F1/metabolismo , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasa 1/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Factor de Empalme Asociado a PTB/metabolismo , Regiones Promotoras Genéticas , ARN Largo no Codificante/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Células HEK293 , Humanos , Neoplasias Renales/genética , Modelos Biológicos , Conformación de Ácido Nucleico , Proteínas de Transporte de Catión Orgánico/genética , Unión Proteica , ARN Largo no Codificante/química , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba/genética
19.
Acta Pharmacol Sin ; 40(4): 546-555, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29930276

RESUMEN

Despite more effective chemotherapy combined with limb-salvage surgery for the osteosarcoma treatment, survival rates for osteosarcoma patients have stagnated over the past three decades due to the poor prognosis. Osteosarcoma cancer stem cells (OSCs) are responsible for the growth and metastasis of osteosarcoma. The existence of OSCs offers a theoretical explanation for therapeutic failures including tumor recurrence, metastasis, and drug resistance. Understanding the pathways that regulate properties of OSCs may shed light on mechanisms that lead to osteosarcoma and suggest better modes of treatment. In this study, we showed that the expression level of Kruppel-like factor 4 (KLF4) is highly associated with human osteosarcoma cancer stemness. KLF4-overexpressed osteosarcoma cells displayed characteristics of OSCs: increased sphere-forming potential, enhanced levels of stemness-associated genes, great chemoresistance to adriamycin and CDDP, as well as more metastasis potential. Inversely, KLF4 knockdown could reduce colony formation in vitro and inhibit tumorigenesis in vivo, supporting an oncogenic role for KLF4 in osteosarcoma pathogenesis. Furthermore, KLF4 was shown to activate the p38 MAPK signaling pathway to promote cancer stemness. Altogether, our studies uncover an essential role for KLF4 in regulation of OSCs and identify KLF4-p38 MAPK axis as a potential therapeutic target for osteosarcoma treatment.


Asunto(s)
Factores de Transcripción de Tipo Kruppel/genética , Células Madre Neoplásicas/metabolismo , Osteosarcoma/genética , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/antagonistas & inhibidores , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Endogámicos BALB C , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Fenotipo , ARN Interferente Pequeño/farmacología , Células Tumorales Cultivadas , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Biochim Biophys Acta ; 1859(9): 1100-1111, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26455953

RESUMEN

The constitutive androstane receptor (CAR) is a key sensor in xenobiotic detoxification and endobiotic metabolism. Increasing evidence suggests that CAR also plays a role in energy metabolism by suppressing the hepatic gluconeogenesis and lipogenesis. In this study, we investigated the effects of two evodia alkaloids, rutaecarpine (Rut) and evodiamine (Evo), on gluconeogenesis and lipogenesis through their activation of the human CAR (hCAR). We found that both Rut and Evo exhibited anti-lipogenic and anti-gluconeogenic effects in the hyperlipidemic HepG2 cells. Both compounds can potently activate hCAR, and treatment of cells with hCAR antagonists reversed the anti-lipogenic and anti-gluconeogenic effects of Rut and Evo. The anti-gluconeogenic effect of Rut and Evo was due to the CAR-mediated inhibition of the recruitment of forkhead box O1 (FoxO1) and hepatocyte nuclear factor 4α (HNF4α) onto the phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) gene promoters. In vivo, we showed that treatment of mice with Rut improved glucose tolerance in a CAR-dependent manner. Our results suggest that the evodia alkaloids Rut and Evo may have a therapeutic potential for the treatment of hyperglycemia and type 2 diabetes. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.


Asunto(s)
Evodia/química , Gluconeogénesis/efectos de los fármacos , Hipoglucemiantes/farmacología , Alcaloides Indólicos/farmacología , Lipogénesis/efectos de los fármacos , Quinazolinas/farmacología , Receptores Citoplasmáticos y Nucleares/genética , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Animales , Receptor de Androstano Constitutivo , Relación Dosis-Respuesta a Droga , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulación de la Expresión Génica , Gluconeogénesis/genética , Glucosa/metabolismo , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Células Hep G2 , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hipoglucemiantes/aislamiento & purificación , Alcaloides Indólicos/aislamiento & purificación , Lipogénesis/genética , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Cultivo Primario de Células , Quinazolinas/aislamiento & purificación , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA