Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Heliyon ; 10(9): e29358, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38694054

RESUMEN

Chemosensation is important for the survival and reproduction of animals. The odorant binding proteins (OBPs) are thought to be involved in chemosensation together with chemosensory receptors. While OBPs were initially considered to deliver hydrophobic odorants to olfactory receptors in the aqueous lymph solution, recent studies suggest more complex roles in various organs. Here, we use GAL4 transgenes to systematically analyze the expression patterns of all 52 members of the Obp gene family and 3 related chemosensory protein genes in adult Drosophila, focusing on chemosensory organs such as the antenna, maxillary palp, pharynx, and labellum, and other organs such as the brain, ventral nerve cord, leg, wing, and intestine. The OBPs were observed to express in diverse organs and in multiple cell types, suggesting that these proteins can indeed carry out diverse functional roles. Also, we constructed 10 labellar-expressing Obp mutants, and obtained behavioral evidence that these OBPs may be involved in bitter sensing. The resources we constructed should be useful for future Drosophila OBP gene family research.

2.
eNeuro ; 7(2)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32220859

RESUMEN

Feeding, a critical behavior for survival, consists of a complex series of behavioral steps. In Drosophila larvae, the initial steps of feeding are food choice, during which the quality of a potential food source is judged, and ingestion, during which the selected food source is ingested into the digestive tract. It remains unclear whether these steps employ different mechanisms of neural perception. Here, we provide insight into the two initial steps of feeding in Drosophila larva. We find that substrate choice and ingestion are determined by independent circuits at the cellular level. First, we took 22 candidate bitter compounds and examined their influence on choice preference and ingestion behavior. Interestingly, certain bitter tastants caused different responses in choice and ingestion, suggesting distinct mechanisms of perception. We further provide evidence that certain gustatory receptor neurons (GRNs) in the external terminal organ (TO) are involved in determining choice preference, and a pair of larval pharyngeal GRNs is involved in mediating both avoidance and suppression of ingestion. Our results show that feeding behavior is coordinated by a multistep regulatory process employing relatively independent neural elements. These findings are consistent with a model in which distinct sensory pathways act as modulatory circuits controlling distinct subprograms during feeding.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Larva , Gusto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA