Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bioinformatics ; 39(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36975610

RESUMEN

MOTIVATION: We have entered the multi-omics era and can measure cells from different aspects. Hence, we can get a more comprehensive view by integrating or matching data from different spaces corresponding to the same object. However, it is particularly challenging in the single-cell multi-omics scenario because such data are very sparse with extremely high dimensions. Though some techniques can be used to measure scATAC-seq and scRNA-seq simultaneously, the data are usually highly noisy due to the limitations of the experimental environment. RESULTS: To promote single-cell multi-omics research, we overcome the above challenges, proposing a novel framework, contrastive cycle adversarial autoencoders, which can align and integrate single-cell RNA-seq data and single-cell ATAC-seq data. Con-AAE can efficiently map the above data with high sparsity and noise from different spaces to a coordinated subspace, where alignment and integration tasks can be easier. We demonstrate its advantages on several datasets. AVAILABILITY AND IMPLEMENTATION: Zenodo link: https://zenodo.org/badge/latestdoi/368779433. github: https://github.com/kakarotcq/Con-AAE.


Asunto(s)
Multiómica , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Secuenciación del Exoma , Análisis de Secuencia de ARN
2.
J Nanosci Nanotechnol ; 18(8): 5397-5403, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29458591

RESUMEN

Asymmetric Cu to In/Sn bonding structure with Ni ultrathin buffer layer (UBL) on Cu side is investigated in this research. The usage of Ni UBL slows down intermetallic compound (IMC) formation during bonding. Asymmetric structure can separate electrical isolation and solder process to avoid interaction, which can prevent IMC formation during polymer curing. A well-bonded asymmetric structure can be achieved with submicron solder by 150 °C bonding for 15 min. The structure shows the potential for low temperature hybrid bonding technology in high-density three-dimensional (3D) integration.

3.
Opt Lett ; 42(23): 4917-4920, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29216144

RESUMEN

Terahertz (THz) polarizers with robust structure and high transmittance are demonstrated using 3D-integrated circuit (IC) technologies. A Cu wire-grid polarizer is sealed and well protected by Si-bonded wafers through a low-temperature eutectic bonding method. Deep reactive-ion etching is used to fabricate the anti-reflection (AR) layers on outward surfaces of bonded wafers. The extinction ratio and transmittance of polarizers are between 20 dB and 33 dB, and 13 dB and 27 dB for 10 µm and 20 µm pitch wire-grids, respectively, and 100% at central frequency, depending on frequency and AR layer thickness. The process of polarizer fabrication is simple from mature semiconductor manufacturing techniques that lead to high yield, low cost, and potential for THz applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA