Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Immunol ; 208(2): 492-500, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34937746

RESUMEN

The interaction of inhibitory receptors with self-MHC class I (MHC-I) molecules is responsible for NK cell education. The intensity of DNAM-1 expression correlates with NK cell education. However, whether DNAM-1 expression directly influences the functional competence of NK cells via the KIR/MHC-I interaction remains unclear. Based on allogeneic haploidentical hematopoietic stem cell transplantation, we investigated the intensity of DNAM-1 expression on reconstituted NK cells via the interaction of KIR with both donor HLA and recipient HLA at days 30, 90, and 180 after hematopoietic stem cell transplantation. The reconstituted NK cells educated by donor and recipient HLA molecules showed the highest DNAM-1 expression, whereas DNAM-1 expression on educated NK cells with only recipient HLA molecules was higher than that on educated NK cells with only donor HLA molecules, indicating that NK cells with donor or recipient HLA molecules regulate DNAM-1 expression and thereby affect NK cell education. Additionally, the effects of recipient cells on NK cell education were greater than those of donor cells. However, only when the DNAM-1, NKP30, and NKG2D receptors were blocked simultaneously was the function of educated and uneducated NK cells similar. Therefore, activating receptors may collaborate with DNAM-1 to induce educated NK cell hyperresponsiveness. Our data, based on in vitro and in vivo studies, demonstrate that the functional competence of NK cells via the KIR/MHC-I interaction correlates with DNAM-1 expression in human NK cells.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Células Asesinas Naturales/inmunología , Receptores KIR/inmunología , Antígenos de Diferenciación de Linfocitos T/biosíntesis , Estudios de Casos y Controles , Trasplante de Células Madre Hematopoyéticas , Humanos , Leucemia Linfoide/terapia , Leucemia Mieloide/terapia , Síndromes Mielodisplásicos/terapia , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Receptor 3 Gatillante de la Citotoxidad Natural/metabolismo , Estudios Prospectivos
2.
Small ; : e2302500, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37259673

RESUMEN

Defect engineering has been regarded as an "all-in-one strategy" to alleviate the insufficient solar utilization in g-C3 N4 . However, without appropriate modification, the defect benefits will be partly offset due to the formation of deep localized defect states and deteriorated surface states, lowering the photocarrier separation efficiency. To this end, the defective g-C3 N4 is designed with both S dopants and N vacancies via a dual-solvent-assisted synthetic approach. The precise defect control is realized by the addition of ethylene glycol (EG) into precursor formation and molten sulfur into the pyrolysis process, which simultaneously induced g-C3N4. with shallow defect states. These shallow defect energy levels can act as a temporary electron reservoir, which are critical to evoke the migrated electrons from CB with a moderate trapping ability, thus suppressing the bulky photocarrier recombination. Additionally, the optimized surface states of DCN-ES are also demonstrated by the highest electron-trapping resistance (Rtrapping ) of 9.56 × 103 Ω cm2 and the slowest decay kinetics of surface carriers (0.057 s-1 ), which guaranteed the smooth surface charge transfer rather than being the recombination sites. As a result, DCN-ES exhibited a superior H2 evolution rate of 4219.9 µmol g-1 h-1 , which is 29.1-fold higher than unmodified g-C3 N4 .

3.
Int J Toxicol ; 42(5): 386-406, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37271574

RESUMEN

Transformed follicular lymphoma (t-FL) is an aggressive malignancy that is refractory and rapidly progressing with poor prognosis. There is currently no effective treatment. High-throughput screening (HTS) platforms are used to profile the sensitivity or toxicity of hundreds of drug molecules, and this approach is applied to identify potential effective treatments for t-FL. We randomly selected a compound panel from the School of Pharmaceutical Sciences Xiamen University, tested the effects of the panel on the activity of t-FL cell lines using HTS and the CCK-8 assay, and identified compounds showing synergistic anti-proliferative activity with the Bcl-2 inhibitor venetoclax (ABT-199). Bioinformatics tools were used to analyze the potential synergistic mechanisms. The single-concentration compound library demonstrated varying degrees of activity across the t-FL cell lines evaluated, of which the Karpas422 cells were the most sensitive, but it was the cell line with the least synergy with ABT-199. We computationally identified 30 drugs with synergistic effects in all cell lines. Molecularly, we found that the targets of these 30 drugs didn't directly regulate Bcl-2 and identified 13 medications with high evidence value above .9 of coordination with ABT-199, further confirming TP53 may play the largest role in the synergistic effect. Collectively, these findings identified the combined regimens of ABT-199 and further suggested that the mechanism is far from directly targeting Bcl-2, but rather through the regulation and synergistic action of p53 and Bcl-2. This study intended to reveal the best synergistic scheme of ABT-199 through HTS to more quickly inform the treatment of t-FL.


Asunto(s)
Antineoplásicos , Linfoma Folicular , Humanos , Linfoma Folicular/tratamiento farmacológico , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/farmacología , Sulfonamidas/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Antineoplásicos/farmacología , Apoptosis , Sinergismo Farmacológico
4.
Sensors (Basel) ; 23(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36772175

RESUMEN

Fundamental theory and methods are investigated of inspecting tubing and casing simultaneously using pulsed eddy current testing by numerical simulations and experiments. The distribution and variation of eddy current field are given in the finite element simulation for the inspection of undamaged and corroded casing and tubing combinations, with tubing outer diameter 73.8 mm, wall thickness 5.7 mm, corrosion depth 1.25 mm, 2.5 mm, 3.75 mm, and casing outer diameter 141.5 mm, wall thickness 7.7 mm, corrosion depth 1.25 mm, 2.5 mm, and 3.75 mm, respectively. The results show that eddy current field propagates around and to the depth after the direct section of the exciting current is cut off and the intensity center of eddy current field shifts gradually from the inner side of the tubing to the casing, which forms the basis of analyzing inspection mechanism. Corrosion at a particular depth is related to a particular optimum time slice of the induced voltage (namely with deepest concave) and a highest sensitivity is obtained at this slice. The time associated with this slice is in accordance with the time when the intensity center of eddy current reaches the corrosion. Corrosion at different depths has different voltage time slices starting to show signal of defect, which can be used to estimate the depth of the defect in order to judge the defect coming from tubing or casing. Furthermore, sinking degree of the time slice reflects the size of the defect. All machined defects can be recognized in the experiments and the optimum time slice appears at 0.01 s and 0.008 s after the excitation current is cut off for the tubing corrosion of 1.25 mm and 2.5 mm, respectively. The optimum time slice appears at the last moment of cut-off period, 0.625, for the casing corrosion. Experimental results agree well with the simulations and show the existence of the optimum correspondence between depth of corrosion and starting time of the defect signal of time slice, relations between sinking degree of the time slice, and corrosion size.

5.
Angew Chem Int Ed Engl ; 62(10): e202217275, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36629025

RESUMEN

Alkaline fuel cells can permit the adoption of platinum group metal-free (PGM-free) catalysts and cheap bipolar plates, thus further lowering the cost. With the exploration of PGM-free hydrogen oxidation reaction (HOR) catalysts, nickel-based compounds have been considered as the most promising HOR catalysts in alkali. Here we report an interfacial engineering through the formation of nickel-vanadium oxide (Ni/V2 O3 ) heterostructures to activate Ni for efficient HOR catalysis in alkali. The strong electron transfer from Ni to V2 O3 could modulate the electronic structure of Ni sites. The optimal Ni/V2 O3 catalyst exhibits a high intrinsic activity of 0.038 mA cm-2 and outstanding stability. Experimental and theoretical studies reveal that Ni/V2 O3 interface as the active sites can enable to optimize the hydrogen and hydroxyl bindings, as well as protect metallic Ni from extensive oxidation, thus achieving the notable activity and durability.

6.
Genes Immun ; 23(5): 166-174, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35821521

RESUMEN

Polymorphisms in the granulocyte colony-stimulating factor receptor gene (GCSFR, CSF3R) have been reported to be associated with peripheral blood stem cell enrichment and hematological diseases. The aim of our study was to investigate the effects of donor CSF3R allelic polymorphisms on the outcomes of allogeneic stem cell transplantation. A total of 273 patients who were diagnosed with hematological diseases and treated with allogeneic hematopoietic stem cell transplantation(allo-HSCT) were enrolled in this study. Single-nucleotide polymorphisms in CSF3R were genotyped by targeted next-generation sequencing. There were six types of CSF3R genotypes with percentages over 1%. LFS and OS analyses showed that recipients receiving grafts from healthy donors with a rs3917980 G/G or A/G genotype had higher LFS rates than those receiving grafts from donors carrying a rs22754272 T/C genotype and the double-negative group (p = 0.036). Univariate cox analysis showed that donor CSF3R with the rs2275472 T/C genotype was associated with higher transplantation-related mortality (TRM) rates (HR = 2.853, 95% CI: 1.405-5.792, p = 0.00371) and lower rates of leukemia-free survival (LFS) (HR = 1.846; 95% CI: 1.018-3.347, p = 0.0435). In addition, donor CSF3R with the rs3917980G/G or A/G genotype was associated with better overall survival (OS) rates (HR = 0.560, 95% CI: 0.3162-0.9916, p = 0.047) and lower TRM rates (HR = 0.497, 95% CI: 0.2628-0.9397, p = 0.0315). Furthermore, multivariate cox analysis found that rs2275472 T/C genotype was an independent risk factors for TRM rates (HR = 3.210, 95% CI: 1.573-6.55, p = 0.001), while no statistical difference was found between rs3917980G/G or A/G genotype and clinical outcomes. Our findings demonstrate the important prognostic value of genetic variations in donor CSF3R to predict clinical outcomes in patients undergoing allo-HSCT.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia , Genotipo , Enfermedad Injerto contra Huésped/genética , Humanos , Receptores del Factor Estimulante de Colonias/genética , Estudios Retrospectivos , Donantes de Tejidos
7.
J Am Chem Soc ; 144(29): 13163-13173, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35849786

RESUMEN

Hydrogen production from water electrolysis in neutral-pH electrolytes can not only avoid the corrosion and safety issues and expand the catalyst option but also potentially integrate with artificial photosynthesis and bioelectrocatalysis. However, heterogeneous catalysts that can efficiently negotiate the sluggish oxygen evolution reaction (OER) in neutral solutions are considerably lacking. Herein, we report a template-assisted strategy for the synthesis of 13 kinds of tube-like nanostructured perovskite oxides (TNPOs) with markedly high Brunauer-Emmett-Teller surface areas. By systematic examination of these TNPOs, we found that the OER activity of TNPOs in neutral solution exhibits a volcano shape as a function of the covalency of transition metal-oxygen bonds. Consequently, our designed Sm-doped LaCoO3 catalyst yields a geometric current density of 8.5 mA cm-2 at 1.75 V versus the reversible hydrogen electrode in 1 M phosphate buffer solution (pH 7) due to the optimized covalency of Co 3d and O 2p states, representing the most active noble-metal-free OER catalyst in neutral electrolytes reported as yet.


Asunto(s)
Elementos de Transición , Agua , Compuestos de Calcio , Hidrógeno , Óxidos , Oxígeno/química , Titanio
8.
Cancer ; 128(14): 2768-2776, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35511874

RESUMEN

BACKGROUND: Estrogen is involved in both bone metabolism and breast cancer proliferation. However, evidence about the risk of breast cancer according to women's bone mineral density (BMD) is scarce, and little is known about their causal associations. METHODS: Women participating in the UK Biobank cohort were used to investigate the association between BMD and the risk of breast cancer using Cox regression models. Instrumental variants associated with estimated BMD (eBMD) were extracted from genome-wide association studies with European ancestry. Logistic regression was used to calculate the genetic association with breast cancer in the UK Biobank and 2-sample Mendelian randomization (MR) analyses to assess their causal associations with breast cancer. Finally, the pleiotropic conditional false discovery rate (cFDR) method was conducted to further detect common genetic variants between BMD and breast cancer. RESULTS: Compared with the general population, postmenopausal women with BMD T scores <-2.5 had a lower risk of breast cancer (hazard ratio [HR], 0.77; 95% CI, 0.59-1.00), and this effect was stronger in women with fracture (HR, 0.31; 95% CI, 0.12-0.82). In MR analysis, no causal associations between eBMD and breast cancer were observed. The cFDR method identified 63 pleiotropic loci associated with both BMD and breast cancer, of which CCDC170, ESR1, and FTO might play crucial roles in their pleiotropy. CONCLUSIONS: An association between BMD and the risk of postmenopausal breast cancer in the UK Biobank was observed, whereas no evidence supported their causal association. Instead, their association could be explained by pleiotropic genetic variants leading to the pathology of osteoporosis and breast cancer.


Asunto(s)
Neoplasias de la Mama , Análisis de la Aleatorización Mendeliana , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Densidad Ósea/genética , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Estudios de Cohortes , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple
9.
Br J Haematol ; 196(4): 1007-1017, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34787307

RESUMEN

Natural killer (NK) cells exert anti-viral effects after haematopoietic stem cell transplantation (HSCT). The balance between inhibition and activation of NK cells determined by the inherited repertoire of killer cell immunoglobulin-like receptors (KIR) genes may influence Epstein-Barr virus (EBV) reactivation after transplantation. To evaluate the relative contributions of KIR genotypes to EBV reactivation, we prospectively enrolled 300 patients with malignant haematological disease who were suitable for haploidentical HSCT. Univariate analysis showed that donors with KIR2DS1, KIR2DS3 or KIR3DS1 genes were associated with an increased risk of EBV reactivation [hazard ratio (HR) 1·86, 95% confidence interval (CI) 1·19-2·9, P = 0·0067; HR 1·78, 95% CI 1·07-2·97, P = 0·027; HR 1·86, 95% CI 1·19-2·91, P = 0·0065 respectively]. Multivariate analysis revealed that the presence of KIR2DS1, KIR2DS3 or KIR3DS1 genes was associated with increased EBV reactivation after HSCT. This effect was more evident in the absence of the cognate ligands for the corresponding activating receptors. Our present data firstly showed that donors with activating KIR genes, specifically activating KIR2DS1, KIR2DS3 and KIR3DS1, had an increased risk of EBV reactivation. Precaution for patients whose donors carry activating genes will help prevent EBV reactivation and improve patient prognosis after HSCT.


Asunto(s)
Infecciones por Virus de Epstein-Barr/terapia , Trasplante de Células Madre Hematopoyéticas/métodos , Receptores KIR/genética , Acondicionamiento Pretrasplante/métodos , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
10.
J Am Chem Soc ; 143(21): 8011-8021, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33913717

RESUMEN

Copper is currently the material with the most promise as catalyst to drive carbon dioxide (CO2) electroreduction to produce value-added multicarbon (C2+) compounds. However, a copper catalyst on a carbon-based gas diffusion layer electrode often has poor stability-especially when performing at high current densities-owing to electrolyte flooding caused by the hydrophobicity decrease of the gas diffusion layer during operation. Here, we report a bioinspired copper catalyst on a gas diffusion layer that mimics the unique hierarchical structuring of Setaria's hydrophobic leaves. This hierarchical copper structure endows the CO2 reduction electrode with sufficient hydrophobicity to build a robust gas-liquid-solid triple-phase boundary, which can not only trap more CO2 close to the active copper surface but also effectively resist electrolyte flooding even under high-rate operation. We consequently achieved a high C2+ production rate of 255 ± 5.7 mA cm-2 with a 64 ± 1.4% faradaic efficiency, as well as outstanding operational stability at 300 mA cm-2 over 45 h in a flow reactor, largely outperforming its wettable copper counterparts.

11.
Eur J Immunol ; 50(9): 1374-1385, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32357256

RESUMEN

BACKGROUND: Adoptive NK cell infusion is a promising immunotherapy for acute myeloid leukemia (AML) patients. The aim of this study was to test the activity of clinical-grade membrane-bound IL-21/4-1BBL-expanded NK cell products against AML in vivo. METHODS: Fresh peripheral blood mononuclear cells (PBMCs) were incubated with equal numbers of irradiated membrane-bound IL-21/4-1BBL-expressing K562 cells for 2-3 weeks to induce clinical-grade NK cell expansion. RESULTS: Expansion for 2 and 3 weeks produced ∼4 and 8 × 109 NK cells from 2 × 107 PBMCs. The production of CD107a and TNF-α in NK cell products in response to AML cell lines and primary blasts was higher than that observed in resting NK cells. The 2-week expanded NK cell products were xenografted into immunodeficient mice with leukemia and were persistently found in the BM, spleen, liver, lung, and peripheral blood for at least 13 days; furthermore, these expanded products reduced the AML burden in vivo. Compared with matched AML patients with persistent or relapsed minimal residual disease (MRD+ ) who underwent regular consolidation therapy, MRD+ patients who underwent NK treatment had better overall survival and showed no major adverse events. CONCLUSIONS: Clinical-grade mbIL-21/4-1BBL-expanded NK cells exhibited antileukemic activity against AML in vitro and in vivo.


Asunto(s)
Células Asesinas Naturales/trasplante , Leucemia Mieloide Aguda/terapia , Ligando 4-1BB/inmunología , Ligando 4-1BB/metabolismo , Adulto , Anciano , Animales , Femenino , Humanos , Interleucinas/inmunología , Interleucinas/metabolismo , Células K562 , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Nano Lett ; 20(8): 6112-6119, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32633528

RESUMEN

The formation of sodium (Na) dendrites during cycling has impeded the practical application of Na metal anodes. Herein, we developed a flexible graphene-based matrix, e.g., a porous reduced graphene oxide (PRGO) film, to support dendrite-free Na nucleation and plating, contributing to high-performance Na metal batteries. The PRGO film possessed outstanding merits of sodiophilicity and flexibility. The sodiophilic PRGO film enabled uniform Na nucleation in the initial electroplating stage. Furthermore, the flexible PRGO film with a small Young's modulus effectively alleviated the texture deformation of electrodeposited Na, leading to a compact and dendrite-free Na deposition layer. The well-maintained Na metal anodes on the PRGO film exhibited superior cyclability, high Coulombic efficiency, and improved energy density in both half-cell and full-cell testing. This work illustrates the great significance of mechanical properties of the supporting matrix for the Na electroplating, which provides a new strategy to develop high-performance dendrite-free Na metal batteries.

13.
Angew Chem Int Ed Engl ; 60(12): 6553-6560, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33438257

RESUMEN

Although the Turing structures, or stationary reaction-diffusion patterns, have received increasing attention in biology and chemistry, making such unusual patterns on inorganic solids is fundamentally challenging. We report a simple cation exchange approach to produce Turing-type Ag2 Se on CoSe2 nanobelts relied on diffusion-driven instability. The resultant Turing-type Ag2 Se-CoSe2 material is highly effective to catalyze the oxygen evolution reaction (OER) in alkaline electrolytes with an 84.5 % anodic energy efficiency. Electrochemical measurements show that the intrinsic OER activity correlates linearly with the length of Ag2 Se-CoSe2 interfaces, determining that such Turing-type interfaces are more active sites for OER. Combing X-ray absorption and computational simulations, we ascribe the excellent OER performance to the optimized adsorption energies for critical oxygen-containing intermediates at the unconventional interfaces.

14.
Clin Infect Dis ; 70(7): 1429-1437, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31067570

RESUMEN

BACKGROUND: Human cytomegalovirus (HCMV) infection, especially persistent HCMV infection, is an important cause of morbidity and mortality after allogenic stem cell transplantation (allo-SCT). Antiviral agents remain the first-line therapy but are limited by side effects and acquired resistance. METHODS: We evaluated the safety and efficacy of donor-derived HCMV-specific cytotoxic T cells (CTLs) as a first-line therapy for HCMV infection after allo-SCT and investigated the underlying mechanisms. RESULTS: In humanized HCMV-infected mice, first-line therapy with CTLs effectively combated systemic HCMV infection by promoting the restoration of graft-derived endogenous HCMV-specific immunity in vivo. In a clinical trial, compared with the pair-matched, high-risk control cohort, first-line therapy with CTLs significantly reduced the rate of persistent (2.9% vs 20.0%, P = .018) and late (5.7% vs 20.0%, P = .01) HCMV infection and cumulative incidence of persistent HCMV infection (hazard ratio [HR], 0.13; 95% confidence interval [CI], 0.10-0.82; P = .02), lowered 1-year treatment-related mortality (HR, 0.15. 95% CI, 0.11-0.90. P = .03), and improved 1-year overall survival (HR, 6.35; 95% CI, 1.05-9.00; P = .04). Moreover, first-line therapy with CTLs promoted the quantitative and functional recovery of CTLs in patients, which was associated with HCMV clearance. CONCLUSIONS: We provide robust support for the benefits of CTLs combined with antiviral drugs as a first-line therapy for treating HCMV infection and suggest that adoptively infused CTLs may stimulate the recovery of endogenous HCMV-specific immunity. CLINICAL TRIALS REGISTRATION: NCT02985775.


Asunto(s)
Antivirales , Infecciones por Citomegalovirus , Trasplante de Células Madre Hematopoyéticas , Animales , Antivirales/uso terapéutico , Citomegalovirus , Infecciones por Citomegalovirus/tratamiento farmacológico , Humanos , Ratones , Trasplante de Células Madre , Trasplante Homólogo
15.
J Am Chem Soc ; 142(13): 6400-6408, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32176485

RESUMEN

Selective and efficient catalytic conversion of carbon dioxide (CO2) into value-added fuels and feedstocks provides an ideal avenue to high-density renewable energy storage. An impediment to enabling deep CO2 reduction to oxygenates and hydrocarbons (e.g., C2+ compounds) is the difficulty of coupling carbon-carbon bonds efficiently. Copper in the +1 oxidation state has been thought to be active for catalyzing C2+ formation, whereas it is prone to being reduced to Cu0 at cathodic potentials. Here we report that catalysts with nanocavities can confine carbon intermediates formed in situ, which in turn covers the local catalyst surface and thereby stabilizes Cu+ species. Experimental measurements on multihollow cuprous oxide catalyst exhibit a C2+ Faradaic efficiency of 75.2 ± 2.7% at a C2+ partial current density of 267 ± 13 mA cm-2 and a large C2+-to-C1 ratio of ∼7.2. Operando Raman spectra, in conjunction with X-ray absorption studies, confirm that Cu+ species in the as-designed catalyst are well retained during CO2 reduction, which leads to the marked C2+ selectivity at a large conversion rate.

16.
J Am Chem Soc ; 141(18): 7537-7543, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31017425

RESUMEN

The design of highly efficient non-noble-metal electrocatalysts for large-scale hydrogen production remains an ongoing challenge. We report here a Ni2P nanoarray catalyst grown on a commercial Ni foam substrate, which demonstrates an outstanding electrocatalytic activity and stability in basic electrolyte. The high catalytic activity can be attributed to the favorable electron transfer, superior intrinsic activity, and the intimate connection between the nanoarrays and their substrate. Moreover, the unique "superaerophobic" surface feature of the Ni2P nanoarrays enables a remarkable capability to withstand internal and external forces and release the in situ generated H2 bubbles in a timely manner at large current densities (such as >1000 mA cm-2) where the hydrogen evolution becomes vigorous. Our results highlight that an aerophobic structure is essential to catalyze gas evolution for large-scale practical applications.

17.
Biol Blood Marrow Transplant ; 25(1): 1-11, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30142416

RESUMEN

The immune mechanism underlying graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (HSCT) remains unclear. Natural killer (NK) cells play a crucial role in mediating pathogen-specific immunity and are the first donor-derived lymphocytes reconstituted post-HSCT. However, NK cells vary at different stages after HSCT. Here, we found that the absolute NKG2A+ subset cell counts and the percentages of NKG2A+ among NK cells were significantly reduced in GVHD patients after HSCT compared with those from non-GVHD patients. Moreover, the reduction in NKG2A+ NK cells in post-HSCT GVHD patients was ascribed to increased apoptosis and a decreased proliferation capacity while retaining a strong graft-versus-leukemia effect. In vitro assays showed that co-culture of T cells with NKG2A+ NK cells significantly reduced IFN-γ secretion by T cells and increased IL-4 secretion. Moreover, the CD25 expression level was decreased, whereas the number of cells with the CD4+CD25+FOXP3+ phenotype was increased. In addition, the NKG2A+ NK cells induced T cell apoptosis and decreased T cell proliferation during the co-culture process. Importantly, NKG2A+ NK cells mainly regulated activated but not resting T cells. In vivo assays showed that the serologic IL-10 level was evidently lower in GVHD than in non-GVHD patients, whereas the IL-1ß, IFN-γ, and tumor necrosis factor-α levels were higher in GVHD patients. Furthermore, the NKG2A+ NK cell ratio from GVHD patients was markedly increased by the presence of exogenous IL-10 but not by other cytokines. In contrast, the NKG2A+ cell ratio from non-GVHD patients was not increased by IL-10. Therefore, post-HSCT GVHD may be ascribed to the reduced induction of NKG2A+ NK cells by IL-10, which further overactivates T cells.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Células Asesinas Naturales , Leucemia , Síndromes Mielodisplásicos , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Adolescente , Adulto , Células Cultivadas , Niño , Femenino , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/patología , Efecto Injerto vs Leucemia/inmunología , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/patología , Leucemia/inmunología , Leucemia/patología , Leucemia/terapia , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/inmunología , Síndromes Mielodisplásicos/patología , Síndromes Mielodisplásicos/terapia , Trasplante Homólogo
18.
Clin Immunol ; 205: 49-56, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31112757

RESUMEN

Mycophenolate mofetil (MMF) is an immunosuppressive agent that is widely used in graft-versus-host disease prophylaxis because of its inhibitory function on T cells and B cells. However, the effect of MMF on natural killer cell reconstitution after allogenic hematological transplantation is largely unknown. The present study examined the effects of different MMF administration durations after haploidentical allo-HSCT on NK cell reconstitution. Ninety patients were enrolled in this study and defined into two groups in term of MMF duration. We found that MMF patients in the long-term MMF group were associated with a poor reconstitution of NK cells and a significantly lower cytotoxicity from day 30 to day 180 post-transplantation. Especially, the long-term MMF group inhibits reconstitution of NKp30 NK subsets, which correlated with higher risk of EBV viremia. Multivariate analysis showed that a better reconstitution of NKp30 cells was associated with lower EBV viremia (HR0.957, p = .04). In vitro experiments demonstrated that the active metabolite of MMF, mycophenolic acid (MPA), inhibited the proliferation and cytotoxicity of NK cells from healthy donors or patients at day 30 post-transplantation. In summary, our findings demonstrated that long-term MMF administration delayed the quality and quantity of NK cells, especially NKp30 subpopulations, which was associated with decreased EBV viremia post allogeneic HSCT.


Asunto(s)
Infecciones por Virus de Epstein-Barr/epidemiología , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas , Reconstitución Inmune/inmunología , Inmunosupresores/administración & dosificación , Células Asesinas Naturales/inmunología , Ácido Micofenólico/administración & dosificación , Viremia/epidemiología , Adolescente , Adulto , Duración de la Terapia , Femenino , Herpesvirus Humano 4 , Humanos , Inmunosupresores/uso terapéutico , Células Asesinas Naturales/metabolismo , Leucemia Mieloide Aguda/terapia , Masculino , Persona de Mediana Edad , Ácido Micofenólico/uso terapéutico , Síndromes Mielodisplásicos/terapia , Receptor 3 Gatillante de la Citotoxidad Natural/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Modelos de Riesgos Proporcionales , Trasplante Homólogo , Adulto Joven
19.
J Cell Mol Med ; 22(6): 3025-3034, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29575692

RESUMEN

Granulocyte colony-stimulating factor (G-CSF) has been widely used in the field of allogeneic haematopoietic stem cell transplantation (allo-HSCT) for priming donor stem cells from the bone marrow (BM) to peripheral blood (PB) to collect stem cells more conveniently. Donor-derived natural killer (NK) cells have important antitumour functions and immune regulatory roles post-allo-HSCT. The aim of this study was to evaluate the effect of G-CSF on donors' NK cells in BM and PB. The percentage of NK cells among nuclear cells and lymphocyte was significantly decreased and led to increased ratio of T and NK cells in BM and PB post-G-CSF in vivo application. Relative expansion of CD56bri NK cells led to a decreased ratio of CD56dim and CD56bri NK subsets in BM and PB post-G-CSF in vivo application. The expression of CD62L, CD54, CD94, NKP30 and CXCR4 on NK cells was significantly increased in PB after G-CSF treatment. G-CSF treatment decreased the IFN-γ-secreting NK population (NK1) dramatically in BM and PB, but increased the IL-13-secreting NK (NK2), TGF-ß-secreting NK (NK3) and IL-10-secreting NK (NKr) populations significantly in BM. Clinical data demonstrated that higher doses of NK1 infused into the allograft correlated with an increased incidence of chronic graft-vs-host disease post-transplantation. Taken together, our results show that the in vivo application of G-CSF can modulate NK subpopulations, leading to an increased ratio of T and NK cells and decreased ratio of CD56dim and CD56bri NK cells as well as decreased NK1 populations in both PB and BM.


Asunto(s)
Células de la Médula Ósea/efectos de los fármacos , Enfermedad Injerto contra Huésped/genética , Factor Estimulante de Colonias de Granulocitos/farmacología , Células Asesinas Naturales/efectos de los fármacos , Adolescente , Adulto , Trasplante de Médula Ósea/métodos , Antígeno CD56/genética , Niño , Femenino , Enfermedad Injerto contra Huésped/sangre , Enfermedad Injerto contra Huésped/patología , Enfermedad Injerto contra Huésped/terapia , Factor Estimulante de Colonias de Granulocitos/genética , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Molécula 1 de Adhesión Intercelular/genética , Interferón gamma/genética , Interleucina-13/genética , Células Asesinas Naturales/trasplante , Selectina L/genética , Masculino , Persona de Mediana Edad , Subfamília D de Receptores Similares a Lectina de las Células NK/genética , Receptor 3 Gatillante de la Citotoxidad Natural/genética , Receptores CXCR4/genética , Trasplante Homólogo/métodos , Adulto Joven
20.
Cell Physiol Biochem ; 47(3): 981-993, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29843123

RESUMEN

BACKGROUND/AIMS: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm. Tyrosine kinase inhibitors (TKIs) are commonly used to treat CML; however, drug resistance of CML cells to TKIs has limited their clinical application. Shikonin, a traditional Chinese herb, has long been used to treat leukemia in China, but the roles and related molecular mechanisms of shikonin treatment in CML remain unclear. Here, we aimed to evaluate the effects of shikonin on the proliferation, apoptosis, and migration of K562 cells, a CML cell line. METHODS: Firstly, K562 cell proliferation and apoptosis were tested by CCK8 assay and flow cytometry with Annexin V-FITC/PI staining. Cell migration was measured by Transwell migration assay. In addition, western blot was performed to determine the proteins (PI3K, Bax, Bcl-2, cleaved caspase-3, PTEN, p-AKT, AKT, CXCR4, SDF-1, CD44) involved in the mechanism of action of shikonin. Finally, neutrophils from peripheral blood of CML patients were obtained, and cell proliferation and apoptosis were tested by CCK8 assay and flow cytometry. RESULTS: Shikonin reduced the proliferation of K562 cells in a time- and dose-dependent manner and promoted the apoptosis of K562 cells. Moreover, shikonin increased the PTEN level and inactivated the PI3K/AKT signaling pathway, subsequently upregulating BAX in K562 cells. In addition, shikonin could block K562 cell migration via the CXCR4/SDF-1 axis. Finally, shikonin significantly inhibited the proliferation and promoted the apoptosis of neutrophils from CML patients. CONCLUSION: These results demonstrated that shikonin inhibits CML proliferation and migration and induces apoptosis by the PTEN/PI3K/AKT pathway, revealing the effects of shikonin therapy on CML.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Naftoquinonas/farmacología , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA