Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38912682

RESUMEN

Two-dimensional-material-based memristors are emerging as promising enablers of new computing systems beyond von Neumann computers. However, the most studied anion-vacancy-enabled transition metal dichalcogenide memristors show many undesirable performances, e.g., high leakage currents, limited memory windows, high programming currents, and limited endurance. Here, we demonstrate that the emergent van der Waals metal phosphorus trisulfides with unconventional nondefective vacancy provide a promising paradigm for high-performance memristors. The different vacancy types (i.e., defective and nondefective vacancies) induced memristive discrepancies are uncovered. The nondefective vacancies can provide an ultralow diffusion barrier and good memristive structure stability giving rise to many desirable memristive performances, including high off-state resistance of 1012 Ω, pA-level programming currents, large memory window up to 109, more than 7-bit conductance states, and good endurance. Furthermore, a high-yield (94%) memristor crossbar array is fabricated and implements multiple image processing successfully, manifesting the potential for in-memory computing hardware.

2.
Blood ; 139(21): 3148-3158, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35303070

RESUMEN

Bruton tyrosine kinase (BTK) inhibitor is an established treatment for relapsed/refractory (R/R) mantle cell lymphoma (MCL). Zanubrutinib, a highly selective BTK inhibitor, is approved for patients with MCL who have received ≥1 prior therapy. We report the long-term safety and efficacy results from the multicenter, open-label, phase 2 registration trial of zanubrutinib. Patients (n = 86) received oral zanubrutinib 160 mg twice daily. The primary endpoint was the overall response rate (ORR), assessed per Lugano 2014. After a median follow-up of 35.3 months, the ORR was 83.7%, with 77.9% achieving complete response (CR); the median duration of response was not reached. Median progression-free survival (PFS) was 33.0 months (95% confidence interval [CI], 19.4-NE). The 36-month PFS and overall survival (OS) rates were 47.6% (95% CI, 36.2-58.1) and 74.8% (95% CI, 63.7-83.0), respectively. The safety profile was largely unchanged with extended follow-up. Most common (≥20%) all-grade adverse events (AEs) were neutrophil count decreased (46.5%), upper respiratory tract infection (38.4%), rash (36.0%), white blood cell count decreased (33.7%), and platelet count decreased (32.6%); most were grade 1/2 events. Most common (≥10%) grade ≥3 AEs were neutrophil count decreased (18.6%) and pneumonia (12.8%). Rates of infection, neutropenia, and bleeding were highest in the first 6 months of therapy and decreased thereafter. No cases of atrial fibrillation/flutter, grade ≥3 cardiac AEs, second primary malignancies, or tumor lysis syndrome were reported. After extended follow-up, zanubrutinib demonstrated durable responses and a favorable safety profile in R/R MCL. The trial is registered at ClinicalTrials.gov as NCT03206970.


Asunto(s)
Linfoma Folicular , Linfoma de Células del Manto , Neutropenia , Adulto , Humanos , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/patología , Neutropenia/inducido químicamente , Piperidinas , Inhibidores de Proteínas Quinasas/efectos adversos , Pirazoles/efectos adversos , Pirimidinas/efectos adversos , Resultado del Tratamiento
3.
Rep Prog Phys ; 85(4)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-34939940

RESUMEN

Two-dimensional (2D) transition metal dichalcogenide (TMDC) materials, such as MoS2, WS2, MoSe2, and WSe2, have received extensive attention in the past decade due to their extraordinary electronic, optical and thermal properties. They evolve from indirect bandgap semiconductors to direct bandgap semiconductors while their layer number is reduced from a few layers to a monolayer limit. Consequently, there is strong photoluminescence in a monolayer (1L) TMDC due to the large quantum yield. Moreover, such monolayer semiconductors have two other exciting properties: large binding energy of excitons and valley polarization. These properties make them become ideal materials for various electronic, photonic and optoelectronic devices. However, their performance is limited by the relatively weak light-matter interactions due to their atomically thin form factor. Resonant nanophotonic structures provide a viable way to address this issue and enhance light-matter interactions in 2D TMDCs. Here, we provide an overview of this research area, showcasing relevant applications, including exotic light emission, absorption and scattering features. We start by overviewing the concept of excitons in 1L-TMDC and the fundamental theory of cavity-enhanced emission, followed by a discussion on the recent progress of enhanced light emission, strong coupling and valleytronics. The atomically thin nature of 1L-TMDC enables a broad range of ways to tune its electric and optical properties. Thus, we continue by reviewing advances in TMDC-based tunable photonic devices. Next, we survey the recent progress in enhanced light absorption over narrow and broad bandwidths using 1L or few-layer TMDCs, and their applications for photovoltaics and photodetectors. We also review recent efforts of engineering light scattering, e.g., inducing Fano resonances, wavefront engineering in 1L or few-layer TMDCs by either integrating resonant structures, such as plasmonic/Mie resonant metasurfaces, or directly patterning monolayer/few layers TMDCs. We then overview the intriguing physical properties of different van der Waals heterostructures, and their applications in optoelectronic and photonic devices. Finally, we draw our opinion on potential opportunities and challenges in this rapidly developing field of research.

4.
Br J Haematol ; 198(1): 62-72, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35383885

RESUMEN

This single-arm, multicentre, phase I study is the first study of zanubrutinib, a potent, specific, irreversible Bruton tyrosine kinase (BTK) inhibitor, in Chinese patients with relapsed/refractory B-cell malignancies. The objectives were to evaluate safety and preliminary anti-tumour activity. Forty-four patients received zanubrutinib 320 mg once daily (QD) (n = 10) or 160 mg twice daily (BID) (n = 34) until disease progression or unacceptable toxicity. 29.5% of patients received zanubrutinib for at least two years. The most common adverse event (AE) and the most common grade 3 or higher AE was neutrophil count decreased (54.5% and 25.0% respectively). Two patients (4.5%) discontinued treatment due to AEs and one treatment-emergent AE led to death. All haemorrhagic events were grade 1-2 (except for one non-serious grade 3 purpura). No second primary malignancies, tumour lysis syndrome, or atrial fibrillation/flutter occurred. The overall response rate was 52.3% (complete response rate, 18.2%). Patients with all cancer subtypes benefited from treatment. BTK C481S/R or L528W mutations were found in zanubrutinib-progressive patients. The safety/efficacy profiles of patients treated with 320 mg QD and 160 mg BID were comparable and similar daily area under the curve (AUC) was achieved. Overall, zanubrutinib was well tolerated and either of these two regimens is clinically practical. Registered at ClinicalTrials.gov (NCT03189524, on 16 June 2017, https://clinicaltrials.gov/ct2/show/NCT03189524).


Asunto(s)
Recurrencia Local de Neoplasia , Inhibidores de Proteínas Quinasas , Agammaglobulinemia Tirosina Quinasa , China , Enfermedad Crónica , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Piperidinas , Inhibidores de Proteínas Quinasas/efectos adversos , Pirazoles , Pirimidinas
5.
Small ; 18(44): e2204317, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36148858

RESUMEN

Van der Waals semiconducting heterostructures, known as stacks of atomically thin transition-metal dichalcogenide (TMD) layers, have recently been reported as new quantum materials with fascinating optoelectronic properties and novel functionalities. These discoveries are significantly related to the interfacial carrier dynamics of the excited states. Carrier dynamics have been reported to be predominantly driven by the ultrafast charge transfer (CT) process; however, the energy transfer (ET) process remains elusive. Herein, the ET process in MoS2 /WS2 heterostructures via transient absorption microscopy is reported. By analyzing the ultrafast dynamics using various MoS2 /WS2 interfaces, an ET rate of ≈240 fs is obtain, which is not trivial to the CT process. This study elucidates the role of the ET process in interfacial carrier dynamics and provides guidance for engineering interfaces for optoelectronic and quantum applications of TMD heterostructures.

6.
Blood ; 136(18): 2027-2037, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-32698195

RESUMEN

Inhibitors of Bruton's tyrosine kinase (BTK) have established therapeutic activity in patients with Waldenström macroglobulinemia (WM). Zanubrutinib, a potent and selective BTK inhibitor, was evaluated in a phase 1/2 study in patients with WM who were either treatment-naïve (TN) or had relapsed/refractory (R/R) disease. Patients had disease requiring treatment per International Workshop on Waldenström Macroglobulinemia (IWWM) criteria. Treatment was 160 mg of oral zanubrutinib twice daily (n = 50) or 320 mg once daily (n = 23). Efficacy endpoints included overall response rate (ORR) and very good partial response/complete response (VGPR/CR) rates per IWWM-6 criteria (with modification of VGPR definition published previously). Between September 2014 and March 2018, 77 patients (24 TN and 53 R/R) began treatment. At a median follow-up of 36.0 months for patients with R/R disease and 23.5 months for TN, 72.7% remained on treatment. Reasons for treatment discontinuation included any adverse events in 13.0% of patients (1 treatment related), disease progression (10.4%), and other (3.9%). The ORR was 95.9%, and the VGPR/CR rate was 45.2%, which increased over time: 20.5% at 6 months, 32.9% at 12 months, and 43.8% at 24 months. Estimated 3-year progression-free survival rate was 80.5%, and overall survival rate was 84.8%. Adverse events of interest included contusion (32.5%, all grade 1), neutropenia (18.2%), major hemorrhage (3.9%), atrial fibrillation/flutter (5.2%), and grade 3 diarrhea (2.6%). Long-term treatment with single-agent zanubrutinib resulted in deep and durable responses in some patients with WM. The safety profile of long-term zanubrutinib therapy in these patients was acceptable. This trial was registered at www.clinicaltrials.gov as #NCT02343120.


Asunto(s)
Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Piperidinas/uso terapéutico , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Terapia Recuperativa , Macroglobulinemia de Waldenström/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/patología , Pronóstico , Tasa de Supervivencia , Macroglobulinemia de Waldenström/patología
7.
Nano Lett ; 21(2): 931-937, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33405934

RESUMEN

We report here details of steady-state and time-resolved spectroscopy of excitonic dynamics for Janus transition metal dichalcogenide monolayers, including MoSSe and WSSe, which were synthesized by low-energy implantation of Se into transition metal disulfides. Absorbance and photoluminescence spectroscopic measurements determined the room-temperature exciton resonances for MoSSe and WSSe monolayers. Transient absorption measurements revealed that the excitons in Janus structures form faster than those in pristine transition metal dichalcogenides by about 30% due to their enhanced electron-phonon interaction by the built-in dipole moment. By combining steady-state photoluminescence quantum yield and time-resolved transient absorption measurements, we find that the exciton radiative recombination lifetime in Janus structures is significantly longer than in their pristine samples, supporting the predicted spatial separation of the electron and hole wave functions due to the built-in dipole moment. These results provide fundamental insight in the optical properties of Janus transition metal dichalcogenides.

8.
Blood ; 134(11): 851-859, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31340982

RESUMEN

Zanubrutinib is a potent and highly selective inhibitor of Bruton tyrosine kinase (BTK). In this first-in-human, open-label, multicenter, phase 1 study, patients in part 1 (3 + 3 dose escalation) had relapsed/refractory B-cell malignancies and received zanubrutinib 40, 80, 160, or 320 mg once daily or 160 mg twice daily. Part 2 (expansion) consisted of disease-specific cohorts, including treatment-naive or relapsed/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). The primary end points were safety and tolerability, and definition of the maximum tolerated dose (part 1). Additional end points included pharmacokinetics/pharmacodynamics and preliminary efficacy. Reported herein are results from 144 patients enrolled in the dose-finding and CLL/SLL cohorts. No dose-limiting toxicities occurred in dose escalation. Median BTK occupancy in peripheral blood mononuclear cells was >95% at all doses. Sustained complete (>95%) BTK occupancy in lymph node biopsy specimens was more frequent with 160 mg twice daily than 320 mg once daily (89% vs 50%; P = .0342). Consequently, 160 mg twice daily was selected for further investigation. With median follow-up of 13.7 months (range, 0.4-30.5 months), 89 CLL/SLL patients (94.7%) remain on study. Most toxicities were grade 1/2; neutropenia was the only grade 3/4 toxicity observed in >2 patients. One patient experienced a grade 3 subcutaneous hemorrhage. Among 78 efficacy-evaluable CLL/SLL patients, the overall response rate was 96.2% (95% confidence interval, 89.2-99.2). Estimated progression-free survival at 12 months was 100%. Zanubrutinib demonstrated encouraging activity in CLL/SLL patients, with a low incidence of major toxicities. This trial was registered at www.clinicaltrials.gov as #NCT02343120.


Asunto(s)
Leucemia de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Linfoma de Células B/tratamiento farmacológico , Piperidinas/uso terapéutico , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Adulto , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Leucemia de Células B/metabolismo , Leucemia de Células B/patología , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células B/metabolismo , Linfoma de Células B/patología , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Piperidinas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazoles/farmacocinética , Pirimidinas/farmacocinética , Resultado del Tratamiento , Adulto Joven
9.
Nano Lett ; 19(2): 1104-1111, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30608697

RESUMEN

Many-body interactions in photoexcited semiconductors can bring about strongly interacting electronic states, culminating in the fully ionized matter of electron-hole plasma (EHP) and electron-hole liquid (EHL). These exotic phases exhibit unique electronic properties, such as metallic conductivity and metastable high photoexcitation density, which can be the basis for future transformative applications. However, the cryogenic condition required for its formation has limited the study of dense plasma phases to a purely academic pursuit in a restricted parameter space. This paradigm can potentially change with the recent experimental observation of these phases in atomically thin MoS2 and MoTe2 at room temperature. A fundamental understanding of EHP and EHL dynamics is critical for developing novel applications on this versatile layered platform. In this work, we studied the formation and dissipation of EHP in monolayer MoS2. Unlike previous results in bulk semiconductors, our results reveal that electromechanical material changes in monolayer MoS2 during photoexcitation play a significant role in dense EHP formation. Within the free-standing geometry, photoexcitation is accompanied by an unconstrained thermal expansion, resulting in a direct-to-indirect gap electronic transition at a critical lattice spacing and fluence. This dramatic altering of the material's energetic landscape extends carrier lifetimes by 2 orders of magnitude and allows the density required for EHP formation. The result is a stable dense plasma state that is sustained with modest optical photoexcitation. Our findings pave the way for novel applications based on dense plasma states in two-dimensional semiconductors.

10.
Opt Lett ; 44(22): 5493-5496, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31730091

RESUMEN

In this work, we studied surface-enhanced Raman scattering (SERS) of MS2 (M=Mo, W) monolayers that were transferred onto Ag nanorod arrays. Compared to the suspended monolayers, the Raman intensity of monolayers on an Ag nanorod substrate was strongly enhanced for both in-plane and out-of-plane vibration modes: up to 8 (5) for E2g and 20 (23) for A1g in MoS2 (WS2). This finding reveals a promising SERS substrate for achieving uniform and strong enhancement for two-dimensional materials in the applications of optical detecting and sensing.

11.
Genome Res ; 25(9): 1325-35, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26160163

RESUMEN

SETDB1, a histone methyltransferase responsible for methylation of histone H3 lysine 9 (H3K9), is involved in maintenance of embryonic stem (ES) cells and early embryonic development of the mouse. However, how SETDB1 regulates gene expression during development is largely unknown. Here, we characterized genome-wide SETDB1 binding and H3K9 trimethylation (H3K9me3) profiles in mouse ES cells and uncovered two distinct classes of SETDB1 binding sites, termed solo and ensemble peaks. The solo peaks were devoid of H3K9me3 and enriched near developmental regulators while the ensemble peaks were associated with H3K9me3. A subset of the SETDB1 solo peaks, particularly those near neural development-related genes, was found to be associated with Polycomb Repressive Complex 2 (PRC2) as well as PRC2-interacting proteins JARID2 and MTF2. Genetic deletion of Setdb1 reduced EZH2 binding as well as histone 3 lysine 27 (H3K27) trimethylation level at SETDB1 solo peaks and facilitated neural differentiation. Furthermore, we found that H3K27me3 inhibits SETDB1 methyltransferase activity. The currently identified reciprocal action between SETDB1 and PRC2 reveals a novel mechanism underlying ES cell pluripotency and differentiation regulation.


Asunto(s)
Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Animales , Sitios de Unión , Metilación , Ratones , Regiones Promotoras Genéticas , Unión Proteica , Secuencias Reguladoras de Ácidos Nucleicos
12.
Nano Lett ; 17(6): 3613-3618, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28505462

RESUMEN

We report that the refractive index of transition metal dichacolgenide (TMDC) monolayers, such as MoS2, WS2, and WSe2, can be substantially tuned by >60% in the imaginary part and >20% in the real part around exciton resonances using complementary metal-oxide-semiconductor (CMOS) compatible electrical gating. This giant tunablility is rooted in the dominance of excitonic effects in the refractive index of the monolayers and the strong susceptibility of the excitons to the influence of injected charge carriers. The tunability mainly results from the effects of injected charge carriers to broaden the spectral width of excitonic interband transitions and to facilitate the interconversion of neutral and charged excitons. The other effects of the injected charge carriers, such as renormalizing bandgap and changing exciton binding energy, only play negligible roles. We also demonstrate that the atomically thin monolayers, when combined with photonic structures, can enable the efficiencies of optical absorption (reflection) tuned from 40% (60%) to 80% (20%) due to the giant tunability of the refractive index. This work may pave the way toward the development of field-effect photonics in which the optical functionality can be controlled with CMOS circuits.

13.
Opt Express ; 23(15): 19154-65, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26367578

RESUMEN

We present an approach of deterministic phase engineering that can enable the rational design of optical Fano resonances with arbitrarily pre-specified lineshapes. Unlike all the approaches previously used to design optical Fano resonances, which fall short of designing the resonances with arbitrary lineshapes because of the lack of information for the optical phases involved, we develop our approach by capitalizing on unambiguous knowledge for the phase of optical modes. Optical Fano resonances arise from the interference of photons interacting with two optical modes with substantially different quality factors. We find that the phase difference of the two modes involved in optical Fano resonances is determined by the eigenfrequency difference of the modes. This allows us to deterministically engineer the phase by tuning the eigenfrequency, which may be very straightforward. We use dielectric grating structures as an example to illustrate the notion of deterministic engineering for the design of optical Fano resonances with arbitrarily pre-specified symmetry, linewidth, and wavelengths.

15.
Nano Lett ; 13(8): 3559-65, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23796363

RESUMEN

Subwavelength dielectric structures offer an attractive low-loss alternative to plasmonic materials for the development of resonant optics functionalities such as metamaterials and optical antennas. Nonspherical-like rectangular dielectric structures are of the most interest from the standpoint of device development due to fabrication convenience. However, no intuitive fundamental understanding of the optical resonance in nonspherical dielectric structures is available, which has substantially delayed the development of dielectric resonant optics devices. Here, we elucidate the general fundamentals of the optical resonance in nonspherical subwavelength dielectric structures with different shapes (rectangular or triangular) and dimensionalities (1D nanowires or 0D nanoparticles). We demonstrate that the optical properties of nonspherical dielectric structures are dictated by the eigenvalue of the structure's leaky modes. Leaky modes are defined as optical modes with propagating waves outside the structure. We also elucidate the dependence of the modal eigenvalue on physical features of the structure. The eigenvalue shows scale invariance with respect to the size of the structure, weak dependence on the refractive index, but linear dependence on the size ratio of different sides of the structure. We propose a modified Fabry-Perot model to account for the linear dependence. The knowledge of leaky modes, including the role in optical responses and the dependence on physical features, can serve as a powerful guide for the rational design of devices with desired optical resonances. It may open up a pathway to design devices with functionality that has not been explored due to the lack of intuitive understanding, for instance, imaging devices able to sense incident angle or superabsorbing photodetectors.

16.
Sci Adv ; 10(11): eadk9474, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478614

RESUMEN

Memristors are considered promising energy-efficient artificial intelligence hardware, which can eliminate the von Neumann bottleneck by parallel in-memory computing. The common imperfection-enabled memristors are plagued with critical variability issues impeding their commercialization. Reported approaches to reduce the variability usually sacrifice other performances, e.g., small on/off ratios and high operation currents. Here, we demonstrate an unconventional Ag-doped nonimperfection diffusion channel-enabled memristor in van der Waals indium phosphorus sulfide, which can combine ultralow variabilities with desirable metrics. We achieve operation voltage, resistance, and on/off ratio variations down to 3.8, 2.3, and 6.9% at their extreme values of 0.2 V, 1011 ohms, and 108, respectively. Meanwhile, the operation current can be pushed from 1 nA to 1 pA at the scalability limit of 6 nm after Ag doping. Fourteen Boolean logic functions and convolutional image processing are successfully implemented by the memristors, manifesting the potential for logic-in-memory devices and efficient non-von Neumann accelerators.

17.
Leuk Lymphoma ; : 1-11, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775302

RESUMEN

To evaluate the effects of gene mutations on Bruton tyrosine kinase inhibitor, zanubrutinib's effectiveness in patients with diffuse large B-cell lymphoma (DLBCL), we examined pooled data from four single-arm studies (BGB-3111-AU-003 [NCT02343120], BGB-3111-207 [NCT03145064], BGB-3111_GA101_Study_001 [NCT02569476], BGB-3111-213 [NCT03520920]; n = 121). Objective response rate (ORR) was higher, though not statistically significant, in patients with activated B-cell-like (ABC)- and unclassified DLBCL (42.9% [21/49]) versus those with germinal-center B-cell-like DLBCL (14.3% [1/7]; p = 0.15). Patients with CD79B mutations had better ORR (60%) versus patients with wild-type alleles (25.9%, p < 0.01). Higher TCL1A expression correlated with better zanubrutinib response (p = 0.03), longer progression-free survival (p = 0.01), and longer overall survival (p = 0.12). TCL1A expression was higher in ABC-DLBCL (p < 0.001) and MYD88/CD79B-mutated subtypes (p < 0.0001). Eighteen patients with high MYC/BCL-2 expression responded better to zanubrutinib (ORR = 61 vs. 29%, p = 0.02). Our results support assessing CD79B mutations, co-expressor DLBCL, and TCL1A expression status to identify patients with DLBCL who will benefit from zanubrutinib.

18.
Sci Adv ; 10(8): eadj0758, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38381831

RESUMEN

Isotope effects have received increasing attention in materials science and engineering because altering isotopes directly affects phonons, which can affect both thermal properties and optoelectronic properties of conventional semiconductors. However, how isotopic mass affects the optoelectronic properties in 2D semiconductors remains unclear because of measurement uncertainties resulting from sample heterogeneities. Here, we report an anomalous optical bandgap energy red shift of 13 (±7) milli-electron volts as mass of Mo isotopes is increased in laterally structured 100MoS2-92MoS2 monolayers grown by a two-step chemical vapor deposition that mitigates the effects of heterogeneities. This trend, which is opposite to that observed in conventional semiconductors, is explained by many-body perturbation and time-dependent density functional theories that reveal unusually large exciton binding energy renormalizations exceeding the ground-state renormalization energy due to strong coupling between confined excitons and phonons. The isotope effect on the optical bandgap reported here provides perspective on the important role of exciton-phonon coupling in the physical properties of two-dimensional materials.

19.
Blood Adv ; 8(7): 1639-1650, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38315878

RESUMEN

ABSTRACT: The phase 3 ASPEN trial (NCT03053440) compared Bruton tyrosine kinase inhibitors (BTKis), zanubrutinib and ibrutinib, in patients with Waldenström macroglobulinemia (WM). Post-hoc biomarker analysis was performed using next-generation sequencing on pretreatment bone marrow samples from 98 patients treated with zanubrutinib and 92 patients treated with ibrutinib with mutated (MUT) MYD88 and 20 patients with wild-type (WT) MYD88 treated with zanubrutinib. Of 329 mutations in 52 genes, mutations in CXCR4 (25.7%), TP53 (24.8%), ARID1A (15.7%), and TERT (9.0%) were most common. TP53MUT, ARID1AMUT, and TERTMUT were associated with higher rates of CXCR4MUT (P < .05). Patients with CXCR4MUT (frameshift or nonsense [NS] mutations) had lower very good partial response (VGPR) and complete response rates (CR; 17.0% vs 37.2%, P = .020) and longer time to response (11.1 vs 8.4 months) than patients with CXCR4WT treated with BTKis. CXCR4NS was associated with inferior progression-free survival (PFS; hazard ratio [HR], 3.39; P = .017) in patients treated with ibrutinib but not in those treated with zanubrutinib (HR, 0.67; P = .598), but VGPR + CR rates were similar between treatment groups (14.3% vs 15.4%). Compared with ibrutinib, patients with CXCR4NS treated with zanubrutinib had a favorable major response rate (MRR; 85.7% vs 53.8%; P = .09) and PFS (HR, 0.30; P = .093). In patients with TP53MUT, significantly lower MRRs were observed for patients treated with ibrutinib (63.6% vs 85.7%; P = .04) but not for those treated with zanubrutinib (80.8% vs 81.9%; P = .978). In TP53MUT, compared with ibrutinib, patients treated with zanubrutinib had higher VGPR and CR (34.6% vs 13.6%; P < .05), numerically improved MRR (80.8% vs 63.6%; P = .11), and longer PFS (not reached vs 44.2 months; HR, 0.66; P = .37). Collectively, patients with WM with CXCR4MUT or TP53MUT had worse prognosis compared with patients with WT alleles, and zanubrutinib led to better clinical outcomes.


Asunto(s)
Adenina/análogos & derivados , Piperidinas , Pirazoles , Pirimidinas , Macroglobulinemia de Waldenström , Humanos , Macroglobulinemia de Waldenström/tratamiento farmacológico , Macroglobulinemia de Waldenström/genética , Factor 88 de Diferenciación Mieloide/genética , Biomarcadores
20.
J Neurosci ; 32(31): 10530-40, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22855803

RESUMEN

Sox2 plays critical roles in cell fate specification during development and in stem cell formation; however, its role in postmitotic cells is largely unknown. Sox2 is highly expressed in supporting cells (SCs) of the postnatal mammalian auditory sensory epithelium, which unlike non-mammalian vertebrates remains quiescent even after sensory hair cell damage. Here, we induced the ablation of Sox2, specifically in SCs at three different postnatal ages (neonatal, juvenile and adult) in mice. In neonatal mice, Sox2-null inner pillar cells (IPCs, a subtype of SCs) proliferated and generated daughter cells, while other SC subtypes remained quiescent. Furthermore, p27(Kip1), a cell cycle inhibitor, was absent in Sox2-null IPCs. Similarly, upon direct deletion of p27(Kip1), p27(Kip1)-null IPCs also proliferated but retained Sox2 expression. Interestingly, cell cycle control of IPCs by Sox2-mediated expression of p27(Kip1) gradually declined with age. In addition, deletion of Sox2 or p27(Kip1) did not cause a cell fate change. Finally, chromatin immunoprecipitation with Sox2 antibodies and luciferase reporter assays with the p27(Kip1) promoter support that Sox2 directly activates p27(Kip1) transcription in postmitotic IPCs. Hence, in contrast to the well known activity of Sox2 in promoting proliferation and cell fate determination, our data demonstrate that Sox2 plays a novel role as a key upstream regulator of p27(Kip1) to maintain the quiescent state of postmitotic IPCs. Our studies suggest that manipulating Sox2 or p27(Kip1) expression is an effective approach to inducing proliferation of neonatal auditory IPCs, an initial but necessary step toward restoring hearing in mammals.


Asunto(s)
Cóclea/citología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Ciliadas Auditivas/metabolismo , Células Laberínticas de Soporte/fisiología , Factores de Transcripción SOXB1/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular Transformada , Proliferación Celular/efectos de los fármacos , Inmunoprecipitación de Cromatina , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Humanos , Etiquetado Corte-Fin in Situ , Proteínas Luminiscentes/genética , Ratones , Ratones Transgénicos , Cadenas Pesadas de Miosina/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción SOXB1/genética , Tamoxifeno/farmacología , Transfección , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA