Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35745084

RESUMEN

Relative permeability of polymer flooding plays a very important role in oil field development. This paper aimed to measure and calculate the relative permeability curves of polymer flooding more accurately. First, viscosity variation law of polymer in porous media was studied. Rock particles of different diameters and cementing agent were used to make artificial cores and hydrophobically associating polymer solutions were prepared for experiments. Polymer solutions were injected into the cores filled with crude oil and irreducible water. In the process of polymer flooding, produced fluid was collected at different water saturations and locations of the core. Polymer solutions were separated and their viscosities were measured. With the experimental data, the viscosity variation rule of polymer transporting in porous media was explored. The result indicates that the viscosity retention rate of polymer solutions transporting in porous media has power function relationship with the water saturation and the dimensionless distance from the core inlet. Finally, the relative permeability curves of polymer flooding were measured by unsteady state method and the viscosity variation rule was applied to the calculation of the relative permeability curves.


Asunto(s)
Polímeros , Agua , Permeabilidad , Porosidad , Viscosidad
2.
RSC Adv ; 12(31): 19990-20003, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35865207

RESUMEN

The CO2 huff-n-puff process is an effective method to enhance oil recovery (EOR) and reduce CO2 emissions. However, its utilization is limited in a channeling reservoir due to early water and gas breakthrough. A novel starch graft copolymer (SGC) gel is proposed for treating the channels and assisting with the CO2 huff-n-puff process. Firstly, the bulk and dynamic performances of the SGC gel including rheology, injectivity and plugging ability are compared with the polymer gel in the laboratory. Then, 3D physical models with water channels are established to reveal the EOR mechanisms of gel assisted CO2 huff-n-puff. Several pilot tests of gel assisted CO2 huff-n-puff are also discussed in this paper. The bulk and dynamic experimental results show that although these two gelants have similar viscosities, the SGC gelant has a better injectivity compared with the polymer gelant. The SGC gel is predominantly a viscous solution, which make it easier to flow through the pore throats. The RF of the SGC gelant is only 0.58 times that of the polymer gelant. After the gelation, a 3D network-like gel with a viscosity of 174 267 mPa s can be formed using the SGC gelant. The RRF of the SGC gel is about three times that of the polymer gel, which shows that the SGC gel has a stronger plugging ability within the porous media. The 3D experimental results show that four cycles of gel assisted CO2 huff-n-puff can achieve an EOR of 11.36%, which is 2.56 times that of the pure CO2 huff-n-puff. After the channels are plugged by the SGC gel, the remaining oil of the near-wellbore area can be first extracted by CO2, and the oil of the deep formation can then be effectively displaced by the edge water. Pilot tests on five wells were conducted in the Jidong Oilfield, China, and a total oil production of 3790.86 m3 was obtained between 2016 and 2021. The proposed novel SGC gel is suitable for assisting with the CO2 huff-n-puff process, which is a beneficial method for further EOR in a water channeling reservoir.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA