Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Microbiol Rep ; 13(6): 878-883, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34459151

RESUMEN

Members of the verrucomicrobial clade 'Candidatus Udaeobacter' rank among the most dominant bacterial phylotypes in soil. Nevertheless, despite this global prevalence, in-depth analyses with respect to pH preferences of 'Ca. Udaeobacter' representatives are still lacking. Here, we utilized a recently designed primer pair, specifically targeting 'Ca. Udaeobacter', to investigate links between soil pH and the abundance as well as phylotype composition of this largely unexplored verrucomicrobial clade. Based on 150 forest and 150 grassland soils, comprising a broad pH range, we determined the highest total abundance of 'Ca. Udaeobacter' in strongly acidic soil (pH, ~5.1) and, noteworthy, in ultra-acidic soil (pH < 3.5) and at a pH ≥ 7, its abundance drastically declined. When we analysed the six most dominant amplicon sequence variants affiliated with 'Ca. Udaeobacter' separately, their abundances peaked within a pH range of approximately 4.7-5.2, and only in one case at slightly acidic soil pH (pH, 6.1). Our study benefits from a combination of quantitative real-time PCR and high-throughput amplicon sequencing, enabling for the first time a highly specific abundance analysis of representatives affiliated with 'Ca. Udaeobacter', which revealed that this globally abundant verrucomicrobial clade shows preferences for acidic soil.


Asunto(s)
Microbiología del Suelo , Suelo , Bacterias , Bosques , Concentración de Iones de Hidrógeno , Suelo/química
2.
Genes (Basel) ; 11(2)2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32019196

RESUMEN

Antibiotic-resistant pathogens claim the lives of thousands of people each year and are currently considered as one of the most serious threats to public health. Apart from clinical environments, soil ecosystems also represent a major source of antibiotic resistance determinants, which can potentially disseminate across distinct microbial habitats and be acquired by human pathogens via horizontal gene transfer. Therefore, it is of global importance to retrieve comprehensive information on environmental factors, contributing to an accumulation of antibiotic resistance genes and mobile genetic elements in these ecosystems. Here, medically relevant antibiotic resistance genes, class 1 integrons and IncP-1 plasmids were quantified via real time quantitative PCR in soils derived from temperate grasslands and forests, varying in land use over a large spatial scale. The generated dataset allowed an analysis, decoupled from regional influences, and enabled the identification of land use practices and soil characteristics elevating the abundance of antibiotic resistance genes and mobile genetic elements. In grassland soils, the abundance of the macrolide resistance gene mefA as well as the sulfonamide resistance gene sul2 was positively correlated with organic fertilization and the abundance of aac(6')-lb, conferring resistance to different aminoglycosides, increased with mowing frequency. With respect to forest soils, the beta-lactam resistance gene blaIMP-12 was significantly correlated with fungal diversity which might be due to the fact that different fungal species can produce beta-lactams. Furthermore, except blaIMP-5 and blaIMP-12, the analyzed antibiotic resistance genes as well as IncP-1 plasmids and class-1 integrons were detected less frequently in forest soils than in soils derived from grassland that are commonly in closer proximity to human activities.


Asunto(s)
Bacterias/crecimiento & desarrollo , Farmacorresistencia Microbiana , Hongos/crecimiento & desarrollo , Integrones , Plásmidos/genética , Agricultura , Bacterias/genética , Proteínas Bacterianas/genética , Monitoreo del Ambiente , Bosques , Proteínas Fúngicas/genética , Hongos/genética , Pradera , Macrólidos/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA