Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cartilage ; : 19476035231210631, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37994560

RESUMEN

OBJECTIVE: Our study was performed to investigate whether micro-223 promotes diabetic Osteoarthritis (OA) progression by regulating cartilage degeneration and subchondral bone remodeling. METHODS: The expression of miR-223 in human normal cartilage, OA cartilage, and subchondral bone tissue with or without DM was detected by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). miR-223 mimic or inhibitor was transfected into chondrocytes. Cell viability and apoptosis were assessed by 3-(4,5)-dimethylthiahiazo(-2)-3,5-diphenyltetrazolium bromide (MTT) and Terminal Deoxynucleotidyl Transferase(TdT)-mediated dUTP nick end labeling (TUNEL) assay, respectively. RESULTS: miR-223 was significantly higher in human diabetic OA cartilage and subchondral bone compared with normal OA and healthy control. Overexpression of miR-223 accelerated cartilage degeneration and subchondral bone sclerosis in diabetic OA mice, whereas miR-223 inhibition had the opposite effect. In vitro upregulation of miR-223 decreased proliferation and enhanced apoptosis of chondrocytes. Meanwhile, downregulation of miR-223 promoted glycosaminoglycan (GAG) production in chondrocytes. CONCLUSION: miR-223 promotes diabetic OA progression by regulating cartilage degeneration and subchondral bone remodeling both in vitro and in vivo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA