Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Development ; 141(24): 4697-709, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25468938

RESUMEN

The balance between self-renewal and differentiation of adult neural stem cells (aNSCs) is essential for the maintenance of the aNSC reservoir and the continuous supply of new neurons, but how this balance is fine-tuned in the adult brain is not fully understood. Here, we investigate the role of SIRT1, an important metabolic sensor and epigenetic repressor, in regulating adult hippocampal neurogenesis in mice. We found that there was an increase in SIRT1 expression during aNSC differentiation. In Sirt1 knockout (KO) mice, as well as in brain-specific and inducible stem cell-specific conditional KO mice, the proliferation and self-renewal rates of aNSCs in vivo were elevated. Proliferation and self-renewal rates of aNSCs and adult neural progenitor cells (aNPCs) were also elevated in neurospheres derived from Sirt1 KO mice and were suppressed by the SIRT1 agonist resveratrol in neurospheres from wild-type mice. In cultured neurospheres, 2-deoxy-D-glucose-induced metabolic stress suppressed aNSC/aNPC proliferation, and this effect was mediated in part by elevating SIRT1 activity. Microarray and biochemical analysis of neurospheres suggested an inhibitory effect of SIRT1 on Notch signaling in aNSCs/aNPCs. Inhibition of Notch signaling by a γ-secretase inhibitor also largely abolished the increased aNSC/aNPC proliferation caused by Sirt1 deletion. Together, these findings indicate that SIRT1 is an important regulator of aNSC/aNPC self-renewal and a potential mediator of the effect of metabolic changes.


Asunto(s)
Células Madre Adultas/fisiología , Proliferación Celular/fisiología , Giro Dentado/citología , Regulación de la Expresión Génica/fisiología , Células-Madre Neurales/fisiología , Sirtuina 1/metabolismo , Células Madre Adultas/metabolismo , Animales , Western Blotting , Bromodesoxiuridina , Proliferación Celular/efectos de los fármacos , Desoxiglucosa/efectos adversos , Fluorescencia , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Noqueados , Análisis por Micromatrices , Microscopía Confocal , Células-Madre Neurales/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , Sirtuina 1/genética , Estadísticas no Paramétricas , Tamoxifeno
2.
Proc Natl Acad Sci U S A ; 109(51): E3558-67, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23213239

RESUMEN

Directional flow of membrane components has been detected at the leading front of fibroblasts and the growth cone of neuronal processes, but whether there exists global directional flow of plasma membrane components over the entire migrating neuron remains largely unknown. By analyzing the trajectories of antibody-coated single quantum dots (QDs) bound to two membrane proteins, overexpressed myc-tagged synaptic vesicle-associated membrane protein VAMP2 and endogenous neurotrophin receptor TrkB, we found that these two proteins exhibited net forward transport, which is superimposed upon Brownian motion, in both leading and trailing processes of migrating cerebellar granule cells in culture. Furthermore, no net directional transport of membrane proteins was observed in nonmigrating cells with either growing or stalling leading processes. Analysis of the correlation of motion direction between two QDs on the same process in migrating neurons also showed a higher frequency of correlated forward than rearward movements. Such correlated QD movements were markedly reduced in the presence of myosin II inhibitor blebbistatin,suggesting the involvement of myosin II-dependent active transport processes. Thus, a net forward transport of plasma membrane proteins exists in the leading and trailing processes of migrating neurons, in line with the translocation of the soma.


Asunto(s)
Membrana Celular/metabolismo , Cerebelo/metabolismo , Gránulos Citoplasmáticos/metabolismo , Animales , Animales Recién Nacidos , Transporte Biológico , Transporte Biológico Activo , Biofisica/métodos , Encéfalo/metabolismo , Movimiento Celular , Difusión , Inmunohistoquímica/métodos , Movimiento (Física) , Miosina Tipo II/metabolismo , Neuritas/metabolismo , Neuronas/metabolismo , Transporte de Proteínas , Puntos Cuánticos , Ratas
3.
J Neuroinflammation ; 11: 114, 2014 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-24950657

RESUMEN

BACKGROUND: Proinflammatory cytokine interleukin-1beta (IL-1ß) is expressed at high levels in the developing brain and declines to low constitutive levels in the adult. However, the pathophysiological function of IL-1ß during brain development remains elusive. In this study, we investigated the role of IL-1ß in neuronal migration. METHODS: The Boyden transwell assay was used to examine the effects of IL-1ß on the migration of dissociated primary cortical neurons. To determine the role of IL-1ß in neuron leading process pathfinding, we employed a growth cone turning assay. In utero electroporation combined with RNAi technology was used to examine the neuronal migration in vivo during brain development in Sprague-Dawley rats. RESULTS: IL-1ß at concentrations ranging from 0.1 to 10 ng/mL in the lower chamber of a transwell induced a significant increase in the number of migrating neurons in a dose-dependent manner. When IL-1ß was simultaneously put in both the upper and lower chambers to eliminate the gradient, no significant differences in cell migration were observed. IL-1 receptor antagonist IL-1RA dose-dependently blocked the attractive effect of IL-1ß on neuronal migration. Microscopic gradients of IL-1ß were created near the growth cones of isolated neurons by repetitive pulsatile application of picoliters of a IL-1ß-containing solution with a micropipette. We found that growth cones exhibited a clear bias toward the source of IL-1ß at the end of a one hour period in the IL-1ß gradient. No significant difference was observed in the rate of neurite extension between IL-1ß and controls. We electroporated specific siRNA constructs against IL-1R1 mRNA into cortical progenitors at embryonic day 16 and examined the position and distribution of transfected cells in the somatosensory cortex at postnatal day 5. We found that neurons transfected with IL-1R1-siRNA displayed a severe retardation in radial migration, with about 83% of total cells unable to arrive at the upper cortical layers. CONCLUSIONS: Our study suggests an essential contribution of IL-1ß to neuronal migration during brain development, which provides a basis to understand the physiological roles of IL-1ß in the developing brain and could have significant implications for the prevention of some neurodevelopment disorders due to abnormal neuronal migration.


Asunto(s)
Movimiento Celular/fisiología , Corteza Cerebral/citología , Interleucina-1beta/fisiología , Neuronas/fisiología , Animales , Animales Recién Nacidos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Embrión de Mamíferos , Femenino , Proteínas Fluorescentes Verdes/genética , Conos de Crecimiento/fisiología , Técnicas In Vitro , Interleucina-1beta/farmacología , Neuronas/citología , Embarazo , Interferencia de ARN/fisiología , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo , Tubulina (Proteína)/metabolismo
4.
Nat Commun ; 15(1): 3746, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702319

RESUMEN

The neural basis of fear of heights remains largely unknown. In this study, we investigated the fear response to heights in male mice and observed characteristic aversive behaviors resembling human height vertigo. We identified visual input as a critical factor in mouse reactions to heights, while peripheral vestibular input was found to be nonessential for fear of heights. Unexpectedly, we found that fear of heights in naïve mice does not rely on image-forming visual processing by the primary visual cortex. Instead, a subset of neurons in the ventral lateral geniculate nucleus (vLGN), which connects to the lateral/ventrolateral periaqueductal gray (l/vlPAG), drives the expression of fear associated with heights. Additionally, we observed that a subcortical visual pathway linking the superior colliculus to the lateral posterior thalamic nucleus inhibits the defensive response to height threats. These findings highlight a rapid fear response to height threats through a subcortical visual and defensive pathway from the vLGN to the l/vlPAG.


Asunto(s)
Miedo , Cuerpos Geniculados , Ratones Endogámicos C57BL , Colículos Superiores , Vías Visuales , Animales , Masculino , Miedo/fisiología , Ratones , Cuerpos Geniculados/fisiología , Colículos Superiores/fisiología , Vías Visuales/fisiología , Sustancia Gris Periacueductal/fisiología , Neuronas/fisiología , Corteza Visual Primaria/fisiología , Percepción Visual/fisiología , Conducta Animal/fisiología
5.
J Cell Sci ; 124(Pt 2): 186-97, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21187345

RESUMEN

Olfactory ensheathing cells (OECs) migrate from the olfactory epithelium towards the olfactory bulb during development. However, the guidance mechanism for OEC migration remains a mystery. Here we show that migrating OECs expressed the receptor of the repulsive guidance factor Slit-2. A gradient of Slit-2 in front of cultured OECs first caused the collapse of the leading front, then the reversal of cell migration. These Slit-2 effects depended on the Ca(2+) release from internal stores through inositol (1,4,5)-triphosphate receptor channels. Interestingly, in response to Slit-2 stimulation, collapse of the leading front required the activation of the F-actin severing protein cofilin in a Ca(2+)-dependent manner, whereas the subsequent reversal of the soma migration depended on the reversal of RhoA activity across the cell. Finally, the Slit-2-induced repulsion of cell migration was fully mimicked by co-application of inhibitors of F-actin polymerization and RhoA kinase. Our findings revealed Slit-2 as a repulsive guidance factor for OEC migration and an unexpected link between Ca(2+) and cofilin signaling during Slit-2-triggered repulsion.


Asunto(s)
Calcio/metabolismo , Movimiento Celular , Cofilina 1/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Bulbo Olfatorio/citología , Bulbo Olfatorio/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Polaridad Celular , Células Cultivadas , Cofilina 1/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Proteínas del Tejido Nervioso/genética , Ratas , Ratas Sprague-Dawley , Proteína de Unión al GTP rhoA/genética
6.
Cereb Cortex ; 22(11): 2587-601, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22123939

RESUMEN

During the morphogenesis of neocortex, newborn neurons undergo radial migration from the ventricular zone toward the surface of the cortical plate to form an "inside-out" lamina structure. The spatiotemporal signals that control this stereotyped radial migration remain elusive. Here, we report that a recently identified Robo family member Robo4 (Magic Roundabout), which was considered to be solely expressed in endothelial cells, is expressed in developing brain and regulates the radial migration of newborn neurons in neocortex. Downregulation of Robo4 expression in cortical newborn neurons by using in utero electroporation, with either specific siRNAs in wild-type rodents or with Cre recombinase in floxed-robo4 mutant mice, led to severe defects in the radial migration of newborn neurons with misorientation of these neurons. Moreover, newborn neurons transfected with Robo4 siRNAs exhibited significantly lower motility in a transwell migration assay (Boyden chamber) in the absence of Slit and significantly higher sensitivity to the repulsive effect of Slit in both transwell migration assay and growth cone collapse assay. Overall, our results showed an important role of Robo4 in the regulation of cortical radial migration through Slit-dependent and -independent mechanisms.


Asunto(s)
Movimiento Celular/genética , Movimiento Celular/fisiología , Neocórtex/citología , Neocórtex/crecimiento & desarrollo , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Receptores de Superficie Celular/genética , Receptores Inmunológicos/genética , Animales , Animales Recién Nacidos , Células Cultivadas , Sistema Nervioso Central/crecimiento & desarrollo , Electroporación , Embrión de Mamíferos/anatomía & histología , Femenino , Citometría de Flujo , Regulación de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Mutación/fisiología , Embarazo , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
BMC Genomics ; 13: 232, 2012 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-22691069

RESUMEN

BACKGROUND: The morphogenesis of the cerebral cortex depends on the precise control of gene expression during development. Small non-coding RNAs, including microRNAs and other groups of small RNAs, play profound roles in various physiological and pathological processes via their regulation of gene expression. A systematic analysis of the expression profile of small non-coding RNAs in developing cortical tissues is important for clarifying the gene regulation networks mediating key developmental events during cortical morphogenesis. RESULTS: Global profiling of the small RNA transcriptome was carried out in rat cerebral cortex from E10 till P28 using next-generation sequencing technique. We found an extraordinary degree of developmental stage-specific expression of a large group of microRNAs. A group of novel microRNAs with functional hints were identified, and brain-enriched expression and Dicer-dependent production of high-abundant novel microRNAs were validated. Profound editing of known microRNAs at "seed" sequence and flanking sequence was observed, with much higher editing events detected at late postnatal stages than embryonic stages, suggesting the necessity of microRNA editing for the fine tuning of gene expression during the formation of complicated synaptic connections at postnatal stages. CONCLUSION: Our analysis reveals extensive regulation of microRNAs during cortical development. The dataset described here will be a valuable resource for clarifying new regulatory mechanisms for cortical development and diseases and will greatly contribute to our understanding of the divergence, modification, and function of microRNAs.


Asunto(s)
Corteza Cerebral/embriología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Animales , Análisis por Conglomerados , Ratas , Ratas Sprague-Dawley , Análisis de Secuencia de ARN
8.
Exp Cell Res ; 317(20): 2823-34, 2011 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21946234

RESUMEN

Olfactory ensheathing cells (OECs) are glial cells in the olfactory system with morphological and functional plasticity. Cultured OECs have the flattened and process-bearing shape. Reversible changes have been found between these two morphological phenotypes. However, the molecular mechanism underlying the regulation of their morphological plasticity remains elusive. Using RhoA FRET biosensor, we found that the active RhoA signal mainly distributed in the lamellipodia and/or filopodia of OECs. Local disruption of these active RhoA distributions led to the morphological change from the flattened into process-bearing shape and promoted process outgrowth. Furthermore, RhoA pathway inhibitors, Toxin-B, C3, Y-27632 or over-expression of DN-RhoA blocked serum-induced morphological change of OECs from the process-bearing into flattened shape, whereas the activation of RhoA pathway by lysophosphatidic acid (LPA) promoted the morphological change from the process-bearing into flattened shape. Finally, ROCK-Myosin-F-actin as a downstream of RhoA pathway was involved in morphological plasticity of OECs. Taken together, these results suggest that RhoA-ROCK-Myosin pathway mediates the morphological plasticity of cultured OECs in response to extracellular cues.


Asunto(s)
Miosinas/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Vías Olfatorias/metabolismo , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Actinas/metabolismo , Amidas/farmacología , Animales , Técnicas Biosensibles/métodos , Células Cultivadas , Lisofosfolípidos/farmacología , Neuroglía/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Vías Olfatorias/efectos de los fármacos , Seudópodos/genética , Seudópodos/metabolismo , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Suero/metabolismo , Transducción de Señal
9.
Proc Natl Acad Sci U S A ; 106(50): 21353-8, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19965374

RESUMEN

Cyclin-dependent kinase 5 (Cdk5) and its activator p35 are critical for radial migration and lamination of cortical neurons. However, how this kinase is regulated by extracellular and intracellular signals during cortical morphogenesis remains unclear. Here, we show that PKCdelta, a member of novel PKC expressing in cortical neurons, could stabilize p35 by direct phosphorylation. PKCdelta attenuated the degradation of p35 but not its mutant derivative, which could not be phosphorylated by PKCdelta. Down-regulation of PKCdelta by in utero electroporation of specific small interference RNA (siRNA) severely impaired the radial migration of cortical neurons. This migration defect was similar to that caused by down-regulation of p35 and could be prevented by cotransfection with the wild-type but not the mutant p35. Furthermore, PKCdelta could be activated by the promigratory factor brain-derived neurotrophic factor (BDNF) and was required for the activation of Cdk5 by BDNF. Both PKCdelta and p35 were required for the promigratory effect of BDNF on cultured newborn neurons. Thus, PKCdelta may promote cortical radial migration through maintaining the proper level of p35 in newborn neurons.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Movimiento Celular , Corteza Cerebral/citología , Proteínas del Tejido Nervioso/metabolismo , Proteína Quinasa C-delta/fisiología , Animales , Células Cultivadas , Quinasa 5 Dependiente de la Ciclina , Regulación hacia Abajo/efectos de los fármacos , Neuronas/citología , Neuronas/metabolismo , Fosforilación , Proteína Quinasa C-delta/genética , Estabilidad Proteica , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley
10.
Nat Neurosci ; 11(1): 36-44, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18059265

RESUMEN

Postmitotic neurons in the developing cortex migrate along radial glial fibers to their proper location in the cortical plate and form the layered structure. Here we report that the radial migration of rat layer II/III cortical neurons requires guidance by the extracellular diffusible factor Semaphorin-3A (Sema3A). This factor is expressed in a descending gradient across the cortical layers, whereas its receptor neuropilin-1 (NP1) is highly expressed in migrating neurons. Downregulation or conditional knockout of NP1 in newborn cortical neurons impedes their radial migration by disrupting their radial orientation during migration without altering their cell fate. Studies in cultured cortical slices further show that the endogenous gradient of Sema3A is required for the proper migration of newborn neurons. In addition, transwell chemotaxis assays show that isolated newborn neurons are attracted by Sema3A. Thus, Sema3A may function as a chemoattractive guidance signal for the radial migration of newborn cortical neurons toward upper layers.


Asunto(s)
Movimiento Celular/fisiología , Corteza Cerebral/citología , Corteza Cerebral/embriología , Neuronas/fisiología , Semaforina-3A/fisiología , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Proteínas Bacterianas/genética , Ensayos de Migración Celular , Movimiento Celular/genética , Células Cultivadas , Relación Dosis-Respuesta a Droga , Electroporación/métodos , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Técnicas In Vitro , Proteínas Luminiscentes/genética , Ratones , Ratones Endogámicos ICR , Neuropilina-1/metabolismo , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Semaforina-3A/genética
11.
Neurosci Bull ; 38(1): 29-46, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34523068

RESUMEN

A large number of putative risk genes for autism spectrum disorder (ASD) have been reported. The functions of most of these susceptibility genes in developing brains remain unknown, and causal relationships between their variation and autism traits have not been established. The aim of this study was to predict putative risk genes at the whole-genome level based on the analysis of gene co-expression with a group of high-confidence ASD risk genes (hcASDs). The results showed that three gene features - gene size, mRNA abundance, and guanine-cytosine content - affect the genome-wide co-expression profiles of hcASDs. To circumvent the interference of these features in gene co-expression analysis, we developed a method to determine whether a gene is significantly co-expressed with hcASDs by statistically comparing the co-expression profile of this gene with hcASDs to that of this gene with permuted gene sets of feature-matched genes. This method is referred to as "matched-gene co-expression analysis" (MGCA). With MGCA, we demonstrated the convergence in developmental expression profiles of hcASDs and improved the efficacy of risk gene prediction. The results of analysis of two recently-reported ASD candidate genes, CDH11 and CDH9, suggested the involvement of CDH11, but not CDH9, in ASD. Consistent with this prediction, behavioral studies showed that Cdh11-null mice, but not Cdh9-null mice, have multiple autism-like behavioral alterations. This study highlights the power of MGCA in revealing ASD-associated genes and the potential role of CDH11 in ASD.


Asunto(s)
Trastorno del Espectro Autista , Cadherinas/genética , Animales , Trastorno del Espectro Autista/genética , Encéfalo , Expresión Génica , Ratones , Ratones Noqueados
12.
J Neurosci ; 30(32): 10885-98, 2010 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-20702717

RESUMEN

Neuronal migration involves coordinated extension of the leading process and translocation of the soma, but the relative contribution of different subcellular regions, including the leading process and cell rear, in driving soma translocation remains unclear. By local manipulation of cytoskeletal components in restricted regions of cultured neurons, we examined the molecular machinery underlying the generation of traction force for soma translocation during neuronal migration. In actively migrating cerebellar granule cells in culture, a growth cone (GC)-like structure at the leading tip exhibits high dynamics, and severing the tip or disrupting its dynamics suppressed soma translocation within minutes. Soma translocation was also suppressed by local disruption of F-actin along the leading process but not at the soma, whereas disrupting microtubules along the leading process or at the soma accelerated soma translocation. Fluorescent speckle microscopy using GFP-alpha-actinin showed that a forward F-actin flow along the leading process correlated with and was required for soma translocation, and such F-actin flow depended on myosin II activity. In migrating neurons, myosin II activity was high at the leading tip but low at the soma, and increasing or decreasing this front-to-rear difference accelerated or impeded soma advance. Thus, the tip of the leading process actively pulls the soma forward during neuronal migration through a myosin II-dependent forward F-actin flow along the leading process.


Asunto(s)
Actinas/metabolismo , Movimiento Celular/fisiología , Conos de Crecimiento/fisiología , Neuronas/fisiología , Actinas/genética , Animales , Animales Recién Nacidos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Cerebelo/citología , Concanavalina A/farmacología , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , Proteínas Fluorescentes Verdes/genética , Microscopía Confocal/métodos , Microtúbulos/metabolismo , Mitógenos/farmacología , Cadenas Ligeras de Miosina/metabolismo , Neuronas/efectos de los fármacos , Nocodazol/farmacología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley , Tiazolidinas/farmacología , Factores de Tiempo , Transfección/métodos , Moduladores de Tubulina/farmacología
13.
Nat Cell Biol ; 5(1): 38-45, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12510192

RESUMEN

Axon extension during development of the nervous system is guided by many factors, but the signalling mechanisms responsible for triggering this extension remain mostly unknown. Here we have examined the role of Rho family small guanosine triphosphatases (GTPases) in mediating axon guidance by diffusible factors. Expression of either dominant-negative or constitutively active Cdc42 in cultured Xenopus laevis spinal neurons, at a concentration that does not substantially affect filopodial formation and neurite extension, abolishes the chemoattractive growth cone turning induced by a gradient of brain-derived neurotrophic factor that can activate Cdc42 and Rac in cultured neurons. Chemorepulsion induced by a gradient of lysophosphatidic acid is also abolished by the expression of dominant-negative RhoA. We also show that an asymmetry in Rho kinase or filopodial initiation across the growth cone is sufficient to trigger the turning response and that there is a crosstalk between the Cdc42 and RhoA pathways through their converging actions on the myosin activity essential for growth cone chemorepulsion.


Asunto(s)
Axones/fisiología , Neuritas/fisiología , Neuronas/fisiología , Transducción de Señal/fisiología , Médula Espinal/fisiología , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Animales , Axones/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/farmacología , División Celular/efectos de los fármacos , División Celular/fisiología , Células Cultivadas , ADN Complementario/genética , Embrión no Mamífero/fisiología , Cinética , Neuritas/efectos de los fármacos , Seudópodos/efectos de los fármacos , Seudópodos/fisiología , Xenopus laevis , Proteína de Unión al GTP cdc42/metabolismo
14.
Nature ; 434(7035): 894-8, 2005 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-15758952

RESUMEN

Brain-derived neurotrophic factor (BDNF) is known to promote neuronal survival and differentiation and to guide axon extension both in vitro and in vivo. The BDNF-induced chemo-attraction of axonal growth cones requires Ca2+ signalling, but how Ca2+ is regulated by BDNF at the growth cone remains largely unclear. Extracellular application of BDNF triggers membrane currents resembling those through TRPC (transient receptor potential canonical) channels in rat pontine neurons and in Xenopus spinal neurons. Here, we report that in cultured cerebellar granule cells, TRPC channels contribute to the BDNF-induced elevation of Ca2+ at the growth cone and are required for BDNF-induced chemo-attractive turning. Several members of the TRPC family are highly expressed in these neurons, and both Ca2+ elevation and growth-cone turning induced by BDNF are abolished by pharmacological inhibition of TRPC channels, overexpression of a dominant-negative form of TRPC3 or TRPC6, or downregulation of TRPC3 expression via short interfering RNA. Thus, TRPC channel activity is essential for nerve-growth-cone guidance by BDNF.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Canales de Calcio/metabolismo , Conos de Crecimiento/efectos de los fármacos , Animales , Calcio/metabolismo , Canales de Calcio/genética , Señalización del Calcio/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Células Cultivadas , Cerebelo/citología , Regulación hacia Abajo , Conductividad Eléctrica , Conos de Crecimiento/metabolismo , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Transporte Iónico/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPC , Fosfolipasas de Tipo C/metabolismo
15.
Mol Cell Neurosci ; 45(1): 26-36, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20510364

RESUMEN

The intermediate filament (IF) protein nestin is a widely accepted molecular marker for neural progenitor cells (NPCs), but its function during neurogenesis remains largely unknown. We found that in embryonic cortical NPCs down-regulation of the expression of nestin, but not its co-polymer IF protein vimentin, resulted in a G1 cell-cycle arrest and a severe reduction in the generation of neurons. Furthermore, down-regulating nestin expression in cultured cortical NPCs markedly suppressed their colony-formation ability and blocked the elevation of the cyclin D1/E protein level in response to the treatment with bFGF. Interestingly, nestin down-regulation caused a marked suppression in the activation of the phosphoinositide 3-kinase (PI3K) pathway but not the mitogen-activated protein kinase (MAPK) pathway in these NPCs. Moreover, defects in the proliferation of cortical NPCs caused by nestin down-regulation could be prevented by up-regulating PI3K activity. Thus, nestin is essential for the proliferation of NPCs by promoting the activation of PI3K in response to mitogenic growth factors.


Asunto(s)
Proliferación Celular , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Células Madre/fisiología , Animales , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/embriología , Femenino , Proteínas de Filamentos Intermediarios/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas del Tejido Nervioso/genética , Nestina , Neurogénesis/fisiología , Neuronas/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Embarazo , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Células Madre/citología , Vimentina/metabolismo
16.
Front Cell Dev Biol ; 7: 205, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31620440

RESUMEN

Newborn neurons in developing brains actively migrate from germinal zones to designated regions before being wired into functional circuits. The motility and trajectory of migrating neurons are regulated by both extracellular factors and intracellular signaling cascades. Defects in the molecular machinery of neuronal migration lead to mis-localization of affected neurons and are considered as an important etiology of multiple developmental disorders including epilepsy, dyslexia, schizophrenia (SCZ), and autism spectrum disorders (ASD). However, the mechanisms that link neuronal migration deficits to the development of these diseases remain elusive. This review focuses on neuronal migration deficits in ASD. From a translational perspective, we discuss (1) whether neuronal migration deficits are general neuropathological characteristics of ASD; (2) how the phenotypic heterogeneity of neuronal migration disorders is generated; (3) how neuronal migration deficits lead to functional defects of brain circuits; and (4) how therapeutic intervention of neuronal migration deficits can be a potential treatment for ASD.

17.
Mol Brain ; 12(1): 40, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31046797

RESUMEN

Results of recent genome-wide association studies (GWAS) and whole genome sequencing (WGS) highlighted type II cadherins as risk genes for autism spectrum disorders (ASD). To determine whether these cadherins may be linked to the morphogenesis of ASD-relevant brain regions, in situ hybridization (ISH) experiments were carried out to examine the mRNA expression profiles of two ASD-associated cadherins, Cdh9 and Cdh11, in the developing cerebellum. During the first postnatal week, both Cdh9 and Cdh11 were expressed at high levels in segregated sub-populations of Purkinje cells in the cerebellum, and the expression of both genes was declined as development proceeded. Developmental expression of Cdh11 was largely confined to dorsal lobules (lobules VI/VII) of the vermis as well as the lateral hemisphere area equivalent to the Crus I and Crus II areas in human brains, areas known to mediate high order cognitive functions in adults. Moreover, in lobules VI/VII of the vermis, Cdh9 and Cdh11 were expressed in a complementary pattern with the Cdh11-expressing areas flanked by Cdh9-expressing areas. Interestingly, the high level of Cdh11 expression in the central domain of lobules VI/VII was correlated with a low level of expression of the Purkinje cell marker calbindin, coinciding with a delayed maturation of Purkinje cells in the same area. These findings suggest that these two ASD-associated cadherins may exert distinct but coordinated functions to regulate the wiring of ASD-relevant circuits in the cerebellum.


Asunto(s)
Trastorno Autístico/genética , Cadherinas/genética , Cerebelo/embriología , Cerebelo/patología , Segregación Cromosómica , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Envejecimiento/genética , Animales , Cadherinas/metabolismo , Calbindinas/metabolismo , Dendritas/metabolismo , Ratones Endogámicos C57BL , Neuroglía/metabolismo , Núcleo Olivar/metabolismo , Células de Purkinje/metabolismo , Factores de Riesgo
18.
Nat Neurosci ; 5(9): 843-8, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12161754

RESUMEN

Growing axons navigate by responding to chemical guidance cues. Here we report that growth cones of rat cerebellar axons in culture turned away from a gradient of SDF-1, a chemokine that attracts migrating leukocytes and cerebellar granule cells via a G protein-coupled receptor (GPCR). Similarly, Xenopus spinal growth cones turned away from a gradient of baclofen, an agonist of the GABA(B) receptor. This response was mediated by G(i) and subsequent activation of phospholipase C (PLC), which triggered two pathways: protein kinase C (PKC) led to repulsion, and inositol 1,4,5-triphosphate (IP(3)) receptor activation led to attractive turning. Under normal culture conditions, PKC-dependent repulsion dominated, but the repulsion could be converted to attraction by inhibiting PKC or by elevating cytosolic cGMP. Thus, GPCRs can mediate both repulsive and attractive axon guidance in vitro, and chemokines may serve as guidance cues for axon pathfinding.


Asunto(s)
Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Sistema Nervioso Central/embriología , Quimiocinas/metabolismo , Proteínas de Unión al GTP/metabolismo , Conos de Crecimiento/metabolismo , Receptores de Superficie Celular/metabolismo , Ácido Aminocaproico/antagonistas & inhibidores , Ácido Aminocaproico/metabolismo , Animales , Baclofeno/farmacología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Células Cultivadas , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Corteza Cerebelosa/citología , Corteza Cerebelosa/embriología , Corteza Cerebelosa/metabolismo , Quimiocina CXCL12 , Quimiocinas CXC/metabolismo , Quimiocinas CXC/farmacología , Quimiotaxis/efectos de los fármacos , Quimiotaxis/fisiología , GMP Cíclico/metabolismo , Agonistas del GABA/farmacología , Agonistas de Receptores GABA-B , Antagonistas de Receptores de GABA-B , Conos de Crecimiento/ultraestructura , Inositol 1,4,5-Trifosfato/metabolismo , Proteína Quinasa C/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de GABA-B/metabolismo , Transducción de Señal/fisiología , Fosfolipasas de Tipo C/metabolismo , Xenopus laevis
19.
J Neurosci ; 25(9): 2338-47, 2005 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-15745960

RESUMEN

Cytoplasmic Ca2+ elevation and changes in Rho GTPase activity are both known to mediate axon guidance by extracellular factors, but the causal relationship between these two events has been unclear. Here we show that direct elevation of cytoplasmic Ca2+ by extracellular application of a low concentration of ryanodine, which activated Ca2+ release from intracellular stores, upregulated Cdc42/Rac, but downregulated RhoA, in cultured cerebellar granule cells and human embryonic kidney 293T cells. Chemoattractive turning of the growth cone triggered by a gradient of ryanodine was blocked by overexpression of mutant forms of Cdc42 but not of RhoA in Xenopus spinal cord neurons. Furthermore, Ca2+-induced GTPase activity correlated with activation of protein kinase C and required a basal activity of Ca2+/calmodulin-dependent protein kinase II. Thus, Rho GTPases may mediate axon guidance by linking upstream Ca2+ signals triggered by guidance factors to downstream cytoskeletal rearrangements.


Asunto(s)
Calcio/metabolismo , Conos de Crecimiento/fisiología , Neuronas/citología , Proteínas de Unión al GTP rho/metabolismo , Animales , Proteínas Bacterianas/farmacología , Toxinas Bacterianas/farmacología , Western Blotting/métodos , Factor Neurotrófico Derivado del Encéfalo/farmacología , Línea Celular , Quelantes/farmacología , Diagnóstico por Imagen/métodos , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Embrión no Mamífero , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Proteínas Fluorescentes Verdes/farmacología , Conos de Crecimiento/efectos de los fármacos , Humanos , Factores de Crecimiento Nervioso/farmacología , Netrina-1 , Neuronas/fisiología , Rianodina/farmacología , Médula Espinal/citología , Tapsigargina/farmacología , Factores de Tiempo , Transfección/métodos , Proteínas Supresoras de Tumor/farmacología , Xenopus , Proteína de Unión al GTP cdc42/farmacología
20.
Sci Rep ; 6: 22576, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26971438

RESUMEN

Transplantation of glial-restricted progenitors (GRPs) is a promising strategy for generating a supportive environment for axon growth in the injured spinal cord. Here we explored the possibility of producing a migratory stream of GRPs via directional cues to create a supportive pathway for axon regeneration. We found that the axon growth inhibitor chondroitin sulfate proteoglycan (CSPG) strongly inhibited the adhesion and migration of GRPs, an effect that could be modulated by the adhesion molecule laminin. Digesting glycosaminoglycan side chains of CSPG with chondroitinase improved GRP migration on stripes of CSPG printed on cover glass, although GRPs were still responsive to the remaining repulsive signals of CSPG. Of all factors tested, the basic fibroblast growth factor (bFGF) had the most significant effect in promoting the migration of cultured GRPs. When GRPs were transplanted into either normal spinal cord of adult rats or the injury site in a dorsal column hemisection model of spinal cord injury, a population of transplanted cells migrated toward the region that was injected with the lentivirus expressing chondroitinase or bFGF. These findings suggest that removing CSPG-mediated inhibition, in combination with guidance by attractive factors, can be a promising strategy to produce a migratory stream of supportive GRPs.


Asunto(s)
Movimiento Celular/fisiología , Células-Madre Neurales/trasplante , Traumatismos de la Médula Espinal/terapia , Trasplante de Células Madre/métodos , Animales , Axones/efectos de los fármacos , Axones/fisiología , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Proteoglicanos Tipo Condroitín Sulfato/farmacología , Laminina/farmacología , Microscopía Fluorescente , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/fisiología , Células-Madre Neurales/citología , Neuroglía/citología , Ratas Transgénicas , Traumatismos de la Médula Espinal/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA