Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Ecotoxicol Environ Saf ; 269: 115824, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38096595

RESUMEN

Eisenia fetida is recognised as advantageous model species in ecotoxicological and regeneration investigations. The intensive utilization of carbamate pesticides (CARs) imposes heavy residue burdens and grave hazards on edaphic environments as well as soil fauna therein. However, precise mechanisms whereby the specific CAR exerted toxic effects on earthworms remain largely elusive, notably from regenerative perspective. Herein, acute responses and regenerative toxicity of two carbamates (metolcarb, MEB and fenoxycarb, FEB) against E. fetida were dissected using biochemical, histological as well as molecular approaches following OECD guidelines at the cellular, tissue and organismal level. The acute toxicity data implied that MEB/FEB were very toxic/medium to extremely toxic, respectively in filter paper contact test and low to medium toxic/low toxic, respectively in artificial soil test. Chronic exposure to MEB and FEB at sublethal concentrations significantly mitigated the soluble protein content, protein abundance while enhanced the protein carbonylation level. Moreover, severely retarded posterior renewal of amputated earthworms was noticed in MEB and FEB treatments relative to the control group, with pronouncedly compromised morphology, dwindling segments and elevated cell apoptosis of blastema tissues, which were mediated by the rising Sox2 and decreasing TCTP levels. Taken together, these findings not only presented baseline toxicity cues for MEB and FEB exposure against earthworms, but also yielded mechanistic insights into regenerative toxicity upon CAR exposure, further contributing to the environmental risk assessment and benchmark formulation of agrochemical pollution in terrestrial ecosystem.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Carbamatos/metabolismo , Ecosistema , Contaminantes del Suelo/análisis , Suelo/química
2.
Ecotoxicol Environ Saf ; 229: 113090, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34929500

RESUMEN

The combination of crop planting and animal rearing in the same area is popular. However, if the methods of planting and rearing are not appropriate, it will result in losses and the disruption of pest management. The toxicities of 17 insecticides to Plutella xylostella, Eriocheir sinensis, and Procambarus clarkii were tested. The recommended maximum field doses were used in 2 d and 4 d bioassays, and the levels of resistance of P. xylostella to insecticides were determined. Of five insecticides that had relatively low toxicity to E. sinensis and P. clarkii, spinetoram and MbNPV showed the best control efficacy of P. xylostella, followed by tetrachlorantraniliprole, chlorantraniliprole, and avermectin. P. xylostella had relatively little resistance to spinetoram, MbNPV, chlorantraniliprole, and avermectin. Therefore, we concluded that the best insecticides suitable for combination planting and rearing fields (cauliflower-crab or cauliflower-crayfish) were spinetoram and MbNPV, followed by chlorantraniliprole and avermectin. Other insecticides, such as emamectin benzoate, indoxacarb, and chlorfenapyr were effective at controlling P. xylostella, but they were not suitable for use in combination planting and rearing fields because of their high toxicity to crabs and crayfish.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Animales , Crustáceos , Resistencia a los Insecticidas , Insecticidas/toxicidad , Larva
3.
Ecotoxicol Environ Saf ; 203: 111033, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32888611

RESUMEN

Diamide insecticides, such as chlorantraniliprole, cyantraniliprole, and tetrachlorantraniliprole, are a new class of insecticides that selectively target insects by affecting calcium homeostasis. While this class of insecticides are effective on a wide range of insect pests, the toxicities of diamide insecticides vary among species and life stages. In this study, we addressed the mechanism underlying the different responses of Plutella xylostella and Pieris rapae to diamide insecticides. The susceptibility to insecticides of P. xylostella and P. rapae larvae was assessed 2 and 4 days after exposure to chlorantraniliprole, cyantraniliprole, and tetrachlorantraniliprole. P. xylostella larvae treated with distilled water (Group A), chlorantraniliprole (Group B), cyantraniliprole (Group C), and tetrachlorantraniliprole (Group D) and P. rapae larvae treated with distilled water (Group E), chlorantraniliprole (Group F), cyantraniliprole (Group G) and tetrachlorantraniliprole (Group H) were subjected to metabolomics analysis. The differential metabolites in the B vs. F, C vs. G, and D vs. H groups were analyzed, followed by pathway enrichment analysis. Chlorantraniliprole, cyantraniliprole, and tetrachlorantraniliprole all showed high toxicities for P. xylostella and P. rapae larvae. P. rapae larvae were more sensitive to the diamide insecticides than P. xylostella larvae. There were 65 overlapped differential metabolites between P. xylostella and P. rapae larvae treated with these three diamide insecticides. Pathway analysis showed that the differential metabolites were closely related with fatty acid biosynthesis and metabolism-related pathways. The differential regulation of fatty acid biosynthesis and metabolism may contribute to the different response to diamide insecticides in P. xylostella and P. rapae.


Asunto(s)
Mariposas Diurnas/efectos de los fármacos , Diamida/farmacología , Insecticidas/farmacología , Metaboloma/efectos de los fármacos , Mariposas Nocturnas/efectos de los fármacos , Animales , Mariposas Diurnas/metabolismo , Larva/efectos de los fármacos , Larva/metabolismo , Mariposas Nocturnas/metabolismo , Especificidad de la Especie
4.
J Insect Sci ; 152015.
Artículo en Inglés | MEDLINE | ID: mdl-26175461

RESUMEN

The effects of cycloxaprid (a modified neonicotinoid insecticide) and buprofezin (a thiadiazine insecticide) on mortality of the white-backed planthopper (WBPH), Sogatella furcifera, were determined in laboratory assays. Cycloxaprid killed WBPH nymphs and adults but buprofezin killed only nymphs, and cycloxaprid acted faster than buprofezin. One day after infestation, mortality of third-instar nymphs was >65% with cycloxaprid at 125 mg liter(-1) but was <38% with buprofezin at 148 mg liter(-1). By the 4th day after infestation, however, control of nymphs by the two insecticides was similar, and cycloxaprid at 125 mg liter(-1) caused ≥ 80% mortality of adults but buprofezin at 148 mg liter(-1) (the highest rate tested) caused almost no adult mortality. LC50 values for cycloxaprid were lowest with nymphs, intermediate with adult males, and highest with adult females. Although buprofezin was slower acting than cycloxaprid, its LC50 for nymphs 5 d after infestation was 3.79-fold lower than that of cycloxaprid. Mean carboxylesterase (CarE) specific activity of nymphal WBPH treated with cycloxaprid and buprofezin was higher than that of control, but there was no significant difference between cycloxaprid and control (no insecticide), and it was significantly higher for buprofezin than those of cycloxaprid and control. For glutathione S-transferase and mixed function oxygenase, the specific activity of nymphal WBPH treated with buprofezin was significantly higher than those of cycloxaprid and control, too.


Asunto(s)
Hemípteros/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Insecticidas/farmacología , Piridinas/farmacología , Tiadiazinas/farmacología , Animales , Femenino , Control de Insectos , Dosificación Letal Mediana , Masculino , Ninfa/efectos de los fármacos
5.
Pest Manag Sci ; 80(8): 3707-3716, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38460117

RESUMEN

BACKGROUND: Polymeric microcapsules (MCs) have become an important issue and have attracted increasing attention because of their tunable physical and chemical properties. Diverse shell structures can confer multiple properties on MCs. RESULTS: Different polyols (1,4-butanediol and glycerin) and polyamines (triethylenetetramine and isophorondiamine) were selected as crosslinkers to obtain emamectin benzoate (EB)-loaded poly(urethane-urea) MCs (PU-MCs) by interfacial polymerization. The four obtained PU-MCs showed sphericity with different degrees of smoothness on their surfaces, and displayed a uniform size distribution ranging from 500 to 700 nm. Moreover, transmission electron microscopy showed that the shell thickness was roughly uniform, and was greatly influenced by the type and structure of the crosslinker. GI-MCs, prepared using glycerin and isophorondiamine, had the largest shell thickness. GT-MCs, obtained using glycerin and triethylenetetramine, had the highest encapsulation efficiency and drug-loading content, and BT-MCs, obtained using mixtures of 1,4-butanediol and triethylenetetramine, had the fastest release behavior. Thermogravimetric analysis revealed that the greater the degree of shell crosslinking, the higher decomposition temperature and the greater the thermal stability. A BT-MC suspension had the lowest viscosity and contact angle with the best wettability. Bioassay experiments showed that BT-MCs exhibited good insecticidal activity against Plutella xylostella larvae with a half-maximal lethal concentration of 4.19 mg/L. Furthermore, a BT-MC suspension showed good thermal and light stability, with potential applications in minimizing the toxicity of EB through sustained release. CONCLUSION: Various properties of EB-loaded PU-MCs were modulated through simple selection of different polyols and polyamines during fabrication, which might have an important role in constructing the pesticide delivery system and improving pesticide utilization. © 2024 Society of Chemical Industry.


Asunto(s)
Cápsulas , Animales , Poliuretanos/química , Polímeros/química , Mariposas Nocturnas/efectos de los fármacos , Insecticidas/farmacología , Insecticidas/química , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Reactivos de Enlaces Cruzados/química , Ivermectina/análogos & derivados , Ivermectina/química , Ivermectina/farmacología
6.
Environ Pollut ; 290: 118038, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34523524

RESUMEN

Isoprocarb (IPC) is a conventional carbamate with high insecticidal activity, however, generalized use of it may cause soil contamination and adversely implicate non-target biota. Following OECD standardized toxicological protocols, the toxic effects of IPC on Eisenia fetida at lethal and sublethal concentrations were examined to elucidate its toxic modes of action as well as biochemical and detoxification responses of E. fetida. Acute toxicity tests showed that IPC induced a concentration-dependent rise of mortality, with LC50 of 8.20 µg/cm2 (48 h) in FPCT and 3.37 mg/kg (14 d) in AST, respectively. The ecotoxicological effects of IPC chronic exposure were measured by physiochemical, qRT-PCR and western blot analysis. Specifically, ROS, MDA and 8-OHdG contents were enhanced and T-AOC, SOD, CAT and POD activities diminished with increasing concentrations. While activities of CYP3A4 and CarE as well as expressions of Hsp70, GPx and GST were elevated upon IPC treatments, responsible for detoxifying mechanisms as implied by principal component analysis (PCA). Meanwhile, IPC diminished NRRT and inhibited AChE activities along with expressions of AChE-related genes. All these striking alterations between IPC-exposed earthworms and controls were illustrated in PCA model. More importantly, growth, reproductive and regenerative toxicity of IPC were observed with reduced cast production and soluble protein content, suppressed ANN protein and gene expressions, reversely modulated TCTP and Sox2 gene and protein, respectively. Taken together, deleterious perturbations could be induced by IPC in biophysiological homeostasis of E. fetida primarily through oxidative stress and neural dysfunction. This study not only highlighted potential hazard of IPC to earthworms in the terrestrial ecosystem, but also expounded upon mechanisms underlying toxic modes of action for IPC and detoxification of earthworms.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Carbamatos , Ecosistema , Estrés Oxidativo , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
7.
Environ Pollut ; 276: 116702, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33636557

RESUMEN

In order to study the co-existing environment of pests and economic animals, the toxicity of 15 insecticides to Plutella xylostella, Monopterus albus, and Paramisgurnus dabryanus was tested. Combined with the recommended maximum doses in the field and bioassay, the results showed that for the three insecticides that were of relatively low toxicity to M. albus and P. dabryanus, spinetoram showed the best control effect on P. xylostella, followed by chlorfenapyr and chlorantraniliprole. However, P. xylostella showed a relatively high resistance to chlorfenapyr. Therefore, the best insecticide suitable for the fields with the cauliflower-finless eel or cauliflower-loach planting and rearing combination was spinetoram, followed by chlorantraniliprole and chlorfenapyr. Other insecticides such as emamectin benzoate, Bacillus thuringiensis (Bt), matrine, and so on were effective against the diamondback moth, but they were not suitable for use because of their high toxicity to the finless eel and loach.


Asunto(s)
Bacillus thuringiensis , Insecticidas , Mariposas Nocturnas , Animales , Peces , Resistencia a los Insecticidas , Insecticidas/toxicidad
8.
PLoS One ; 15(11): e0242052, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33166345

RESUMEN

Tetrachlorantraniliprole (TCAP) is a novel anthranilic diamide insecticide that specifically targets the ryanodine receptors of lepidopteran insect species with excellent insecticidal activity. Previous studies have reported the sublethal effects of multiple diamides on several lepidopteran species, whereas the sublethal and non-target effects of TCAP remain largely unknown. We assessed the sublethal effects of TCAP on Spodoptera exigua. We also investigated the effects of TCAP on non-target Harmonia axyridis and Eisenia fetida, S. exigua was more sensitive to TCAP than to chlorantraniliprole, as the LC50 (10.371 µg L-1 at 72 h) of TCAP was relatively lower. Compared with those of the control, sublethal concentrations of TCAP (LC10 and LC30) not only prolonged the duration of the larval and pupal stages as well as the mean generation time but also reduced certain population parameters. On the other hand, TCAP exposure, even at the highest concentration, did not induce toxic effects in H. axyridis ladybugs (1st instar larvae and adults) or E. fetida earthworms. Taken together, our results suggest that TCAP can be used as a novel and promising component of the integrated pest management (IPM) program against S. exigua due to its robust target effects and negligible non-target risks.


Asunto(s)
Insecticidas/toxicidad , Spodoptera/efectos de los fármacos , ortoaminobenzoatos/toxicidad , Animales , Femenino , Insecticidas/química , Larva/efectos de los fármacos , Larva/fisiología , Dosificación Letal Mediana , Masculino , Pupa/efectos de los fármacos , Pupa/fisiología , Spodoptera/fisiología , ortoaminobenzoatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA