RESUMEN
Although it is known that the centrioles play instructive roles in pericentriolar material (PCM) assembly and that the PCM is essential for proper centriole formation, the mechanism that governs centriole-PCM interaction is poorly understood. Here, we show that ATF5 forms a characteristic 9-fold symmetrical ring structure in the inner layer of the PCM outfitting the proximal end of the mother centriole. ATF5 controls the centriole-PCM interaction in a cell-cycle- and centriole-age-dependent manner. Interaction of ATF5 with polyglutamylated tubulin (PGT) on the mother centriole and with PCNT in the PCM renders ATF5 as a required molecule in mother centriole-directed PCM accumulation and in PCM-dependent centriole formation. ATF5 depletion blocks PCM accumulation at the centrosome and causes fragmentation of centrioles, leading to the formation of multi-polar mitotic spindles and genomic instability. These data show that ATF5 is an essential structural protein that is required for the interaction between the mother centriole and the PCM.
Asunto(s)
Factores de Transcripción Activadores/metabolismo , Centriolos/metabolismo , Centrosoma/metabolismo , Citoesqueleto/metabolismo , Regulación hacia Abajo , Inestabilidad Genómica , Células HeLa , Humanos , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismoRESUMEN
T cell engaging bispecific antibodies (TCBs) have recently become significant in cancer treatment. In this study we developed MSLN490, a novel TCB designed to target mesothelin (MSLN), a glycosylphosphatidylinositol (GPI)-linked glycoprotein highly expressed in various cancers, and evaluated its efficacy against solid tumors. CDR walking and phage display techniques were used to improve affinity of the parental antibody M912, resulting in a pool of antibodies with different affinities to MSLN. From this pool, various bispecific antibodies (BsAbs) were assembled. Notably, MSLN490 with its IgG-[L]-scFv structure displayed remarkable anti-tumor activity against MSLN-expressing tumors (EC50: 0.16 pM in HT-29-hMSLN cells). Furthermore, MSLN490 remained effective even in the presence of non-membrane-anchored MSLN (soluble MSLN). Moreover, the anti-tumor activity of MSLN490 was enhanced when combined with either Atezolizumab or TAA × CD28 BsAbs. Notably, a synergistic effect was observed between MSLN490 and paclitaxel, as paclitaxel disrupted the immunosuppressive microenvironment within solid tumors, enhancing immune cells infiltration and improved anti-tumor efficacy. Overall, MSLN490 exhibits robust anti-tumor activity, resilience to soluble MSLN interference, and enhanced anti-tumor effects when combined with other therapies, offering a promising future for the treatment of a variety of solid tumors. This study provides a strong foundation for further exploration of MSLN490's clinical potential.
Asunto(s)
Proteínas Ligadas a GPI , Mesotelina , Humanos , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/antagonistas & inhibidores , Animales , Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos Biespecíficos/farmacología , Paclitaxel/uso terapéutico , Paclitaxel/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/terapia , Ratones , Femenino , Células HT29 , Ratones Endogámicos BALB C , Ratones Desnudos , Línea Celular Tumoral , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacologíaRESUMEN
The continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants poses challenges to the effectiveness of neutralizing antibodies. Rational design of antibody cocktails is a realizable approach addressing viral immune evasion. However, evaluating the breadth of antibody cocktails is essential for understanding the development potential. Here, based on a replication competent vesicular stomatitis virus model that incorporates the spike of SARS-CoV-2 (VSV-SARS-CoV-2), we evaluated the breadth of a number of antibody cocktails consisting of monoclonal antibodies and bispecific antibodies by long-term passaging the virus in the presence of the cocktails. Results from over two-month passaging of the virus showed that 9E12 + 10D4 + 2G1 and 7B9-9D11 + 2G1 from these cocktails were highly resistant to random mutation, and there was no breakthrough after 30 rounds of passaging. As a control, antibody REGN10933 was broken through in the third passage. Next generation sequencing was performed and several critical mutations related to viral evasion were identified. These mutations caused a decrease in neutralization efficiency, but the reduced replication rate and ACE2 susceptibility of the mutant virus suggested that they might not have the potential to become epidemic strains. The 9E12 + 10D4 + 2G1 and 7B9-9D11 + 2G1 cocktails that picked from the VSV-SARS-CoV-2 system efficiently neutralized all current variants of concern and variants of interest including the most recent variants Delta and Omicron, as well as SARS-CoV-1. Our results highlight the feasibility of using the VSV-SARS-CoV-2 system to develop SARS-CoV-2 antibody cocktails and provide a reference for the clinical selection of therapeutic strategies to address the mutational escape of SARS-CoV-2.
Asunto(s)
Anticuerpos Biespecíficos , COVID-19 , Humanos , SARS-CoV-2 , Terapéutica Combinada de Anticuerpos , Pruebas de Neutralización , Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos NeutralizantesRESUMEN
Activating transcription factor 5 (ATF5) belongs to the activating transcription factor/cyclic adenosine monophosphate (cAMP) response element-binding protein family of basic region leucine zipper transcription factors. ATF5 plays an important role in cell stress regulation and is involved in cell differentiation and survival, as well as centrosome maintenance and development. Accumulating evidence demonstrates that ATF5 plays an oncogenic role in cancer by regulating gene expressions involved in tumorigenesis and tumor survival. Recent studies have indicated that ATF5 may also modify the gene expressions involved in other diseases. This review explores in detail the regulation of ATF5 expression and signaling pathways and elucidates the role of ATF5 in cancer biology. Furthermore, an overview of putative therapeutic strategies that can be used for restoring aberrant ATF5 activity in different cancer types is provided.
Asunto(s)
Factores de Transcripción Activadores , Neoplasias , Factores de Transcripción Activadores/genética , Factores de Transcripción Activadores/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Humanos , Neoplasias/genéticaRESUMEN
Peptides, as a large group of molecules, are composed of amino acid residues and can be divided into linear or cyclic peptides according to the structure. Over 13,000 molecules of natural peptides have been found and many of them have been well studied. In artificial peptide libraries, the number of peptide diversity could be up to 1 × 1013. Peptides have more complex structures and higher affinity to target proteins comparing with small molecular compounds. Recently, the development of targeting cancer immune checkpoint (CIP) inhibitors is having a very important role in tumor therapy. Peptides targeting ligands or receptors in CIP have been designed based on three-dimensional structures of target proteins or directly selected by random peptide libraries in biological display systems. Most of these targeting peptides work as inhibitors of protein-protein interaction and improve CD8+ cytotoxic T-lymphocyte (CTL) activation in the tumor microenvironment, for example, PKHB1, Ar5Y4 and TPP1. Peptides could be designed to regulate CIP protein degradation in vivo, such as PD-LYSO and PD-PALM. Besides its use in developing therapeutic drugs for targeting CIP, targeting peptides could be used in drug's targeted delivery and diagnosis in tumor immune therapy.
Asunto(s)
Sistemas de Liberación de Medicamentos , Terapia Molecular Dirigida , Péptidos/metabolismo , Péptidos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/inmunología , Humanos , Ligandos , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Biblioteca de Péptidos , Péptidos/química , Tripeptidil Peptidasa 1RESUMEN
Activating transcription factor 5 (ATF5) is a member of the ATF/cAMP response element-binding protein family of transcription factors. ATF5 regulates stress responses and cell survival, proliferation, and differentiation and also plays a role in viral infections, cancer, diabetes, schizophrenia, and the olfactory system. Moreover, it was found to also have a critical cell cycle-dependent structural function at the centrosome. However, the mechanism that controls the localization of ATF5 at the centrosome is unclear. Here we report that ATF5 is small ubiquitin-like modifier (SUMO) 2/3-modified at a conserved SUMO-targeting consensus site in various types of mammalian cells. We found that SUMOylation of ATF5 is elevated in the G1 phase of the cell cycle and diminished in the G2/M phase. ATF5 SUMOylation disrupted the interaction of ATF5 with several centrosomal proteins and dislodged ATF5 from the centrosome at the end of the M phase. Of note, blockade of ATF5 SUMOylation deregulated the centrosome cycle, impeded ATF5 translocation from the centrosome, and caused genomic instability and G2/M arrest in HeLa cells. Our results indicate that ATF5 SUMOylation is an essential mechanism that regulates ATF5 localization and function at the centrosome.
Asunto(s)
Factores de Transcripción Activadores/metabolismo , Centrosoma/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Ubiquitinas/metabolismo , Factores de Transcripción Activadores/química , Factores de Transcripción Activadores/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Línea Celular , Centrosoma/enzimología , Secuencia de Consenso , Secuencia Conservada , Eliminación de Gen , Inestabilidad Genómica , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Microscopía Fluorescente , Mutagénesis Sitio-Dirigida , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Transporte de Proteínas , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/antagonistas & inhibidores , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Ubiquitinas/antagonistas & inhibidores , Ubiquitinas/química , Ubiquitinas/genéticaRESUMEN
Antigen-binding fragments (Fabs) are an important part of monoclonal antibody (mAb) therapeutics and can be cost-effectively produced using an Escherichia coli (E. coli) expression system. However, Fabs tend to form undesirable aggregates when expressed in the cytoplasm of E. coli, substantially reducing the yield of correctly folded proteins. To solve this problem, in this study, we used five Fab fragments targeting IGF1R, Her2, VEGF, RANKL, and PD-1 to develop a novel system employing the alkaline phosphatase (phoA) promoter and the heat-stable enterotoxin II (STII) leader sequence to facilitate the efficient expression and extracellular secretion of Fabs. Following phosphate starvation, all five Fab fragments were expressed in BL21(DE3), were largely secreted into the culture medium, and then, were further purified by affinity chromatography specific to the constant region of the light chain. The purified Fab products were evaluated and were found to have high purity, antigen-binding affinity, and in vitro bioactivity. The mechanism experiments revealed that (1) BL21(DE3) had significantly higher productivity than the K-12 strains investigated; (2) the secretion ability of the PhoA promoter was superior to that of the T7 promoter; and (3) signal peptide, STII, showed higher extracellular secretion efficiency than pelB. Our findings strongly suggested that the phoA-STII-facilitated extracellular production platform is highly promising for application in the manufacturing of Fab fragments for both academic and industrial purposes.
Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Fragmentos Fab de Inmunoglobulinas/aislamiento & purificación , Fragmentos Fab de Inmunoglobulinas/metabolismo , Fosfatasa Alcalina/genética , Afinidad de Anticuerpos , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Medios de Cultivo/química , Enterotoxinas/genética , Enterotoxinas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Humanos , Fragmentos Fab de Inmunoglobulinas/genética , Regiones Promotoras Genéticas , Señales de Clasificación de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismoRESUMEN
Soluble receptor for advanced glycation end products (sRAGE), a natural inhibitor of RAGE, is considered to be a putative therapeutic molecule for a variety of diseases and a biomarker for certain conditions. To further study the function of sRAGE, recombinant rat sRAGE (rrsRAGE) was expressed and produced in a eukaryotic system. The open reading frame of rat sRAGE was cloned downstream of the methanol-inducible alcohol oxidase promoter of pPICZαA vector, and Pichia pastoris strain X-33 was used as the host strain. The expression of rrsRAGE was achieved by fermentation in a 15-L bioreactor and the resulting fermentation broth was subjected to purification on a cation exchange chromatography column. The purification of rrsRAGE reached 95% after size exclusion chromatography(SEC). The bioactivity of the purified protein was confirmed in a SH-SY5Y cell proliferation assay. The biological function of the purified rrsRAGE protein rat CCl4-induced model was then examined. Treatment with rrsRAGE resulted in significantly lower liver fibrosis and lower serum level of ALT, suggesting that sRAGE prevent liver from injury and fibrosis. In conclusion, we achieved high-efficiency production of bioactive rrsRAGE in P. pastoris.
Asunto(s)
Intoxicación por Tetracloruro de Carbono/prevención & control , Vectores Genéticos/química , Cirrosis Hepática/prevención & control , Pichia/genética , Receptor para Productos Finales de Glicación Avanzada/biosíntesis , Animales , Secuencia de Bases , Reactores Biológicos , Tetracloruro de Carbono , Intoxicación por Tetracloruro de Carbono/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Clonación Molecular , Fermentación , Expresión Génica , Vectores Genéticos/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología , Neuronas/citología , Neuronas/efectos de los fármacos , Sistemas de Lectura Abierta , Pichia/metabolismo , Regiones Promotoras Genéticas , Ratas , Ratas Sprague-Dawley , Receptor para Productos Finales de Glicación Avanzada/administración & dosificación , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacologíaRESUMEN
BACKGROUND: Hepatocellular carcinoma (HCC) is one of most common and aggressive human malignancies in the world, especially, in eastern Asia, and its mortality is very high at any phase. We want to investigate mechanism of niclosamide inducing cell apoptosis in HCC. METHODS: Two hepatoma cell lines were used to evaluate activity of niclosamide inducing cell apoptosis and study its mechanism. Quantitative real-time PCR and western blotting were used in analysis of genes expression or protein active regulated by niclosamide. RESULTS: Niclosamide remarkably induced cell apoptosis in hepatoma cells. Furthermore, our study revealed that RNA-dependent protein kinase-like kinase (PERK) is activated and its expression is up-regulated in HCC cells which are exposed to niclosamide. niclosamide also significantly increase activating transcription factor 3 (ATF3), activating transcription factor 4 (ATF4) and CCAAT/enhancer-binding protein-homologous protein (CHOP) expression in HCC cells. It's suggested that the function of niclosamide was abrogated by PERK inhibitor or absent ATF3. Expression of PERK and CHOP is correlated with ATF3 level in the cells. CONCLUSION: Taken together, our results indicate that ATF3 plays an integral role in ER stress activated and cell apoptosis induced by niclosamide in HCC cells. In this study, the new mechanism of niclosamide as anti-cancer we investigated, too.
Asunto(s)
Factor de Transcripción Activador 3/efectos de los fármacos , Antihelmínticos/farmacología , Apoptosis/efectos de los fármacos , Niclosamida/farmacología , ARN Mensajero/efectos de los fármacos , eIF-2 Quinasa/efectos de los fármacos , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 4/efectos de los fármacos , Factor de Transcripción Activador 4/genética , Carcinoma Hepatocelular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citometría de Flujo , Técnicas de Inactivación de Genes , Células Hep G2 , Humanos , Etiquetado Corte-Fin in Situ , Neoplasias Hepáticas , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Transcripción CHOP/efectos de los fármacos , Factor de Transcripción CHOP/genética , Activación Transcripcional/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , eIF-2 Quinasa/metabolismoRESUMEN
Adult T cell leukemia and lymphoma (ATL) is a highly aggressive form of hematological malignancy and is caused by chronic infection of human T cell leukemia virus type 1 (HTLV-1). The viral genome encodes an oncogenic protein, Tax, which plays a key role in transactivating viral gene transcription and in deregulating cellular oncogenic signaling to promote survival, proliferation and transformation of virally infected T cells. Hence, Tax is a desirable therapeutic target, particularly at early stage of HTLV-1-mediated oncogenesis. We here show that niclosamide, an anti-helminthic molecule, induced apoptosis of HTLV-1-transformed T cells. Niclosamide facilitated degradation of the Tax protein in proteasome. Consistent with niclosamide-mediated Tax degradation, this compound inhibited activities of MAPK/ERK1/2 and IκB kinases. In addition, niclosamide downregulated Stat3 and pro-survival Bcl-2 family members such as Mcl-1 and repressed the viral gene transcription of HTLV-1 through induction of Tax degradation. Since Tax, Stat3 and Mcl-1 are crucial molecules for promoting survival and growth of HTLV-1-transformed T cells, our findings demonstrate a novel mechanism of niclosamide in inducing Tax degradation and downregulating various cellular pro-survival molecules, thereby promoting apoptosis of HTLV-1-associated leukemia cells.
Asunto(s)
Antinematodos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Viral de la Expresión Génica/efectos de los fármacos , Productos del Gen tax/antagonistas & inhibidores , Virus Linfotrópico T Tipo 1 Humano/efectos de los fármacos , Niclosamida/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Apoptosis , Línea Celular Transformada , Productos del Gen tax/genética , Productos del Gen tax/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Virus Linfotrópico T Tipo 1 Humano/genética , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Humanos , Quinasa I-kappa B/antagonistas & inhibidores , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Linfocitos TRESUMEN
BACKGROUND: Though tamoxifen achieves success in treating estrogen receptor α (ERα)-positive breast cancer, the followed development of tamoxifen resistance is a common challenge in clinic. Signals downstream of prolactin receptor (PRLR) could synergize with ERα in breast cancer progression. However, the potential effect of targeting PRL-PRLR axis combined with tamoxifen has not been thoroughly investigated. METHODS: High-throughput RNA-seq data obtained from TCGA, Metabric and GEO datasets were analyzed to explore PRLR expression in breast cancer cell and the association of PRLR expression with tamoxifen treatment. Exogenous or PRL overexpression cell models were employed to investigate the role of activated PRLR pathway in mediating tamoxifen insensitivity. Immunotoxin targeting PRLR (N8-PE24) was constructed with splicing-intein technique, and the efficacy of N8-PE24 against breast cancer was evaluated using in vitro and in vivo methods, including analysis of cells growth or apoptosis, 3D spheroids culture, and animal xenografts. RESULTS: PRLR pathway activated by PRL could significantly decrease sensitivity of ERα-positive breast cancer cells to tamoxifen. Tamoxifen treatment upregulated transcription of PRLR and could induce significant accumulation of PRLR protein in breast cancer cells by alkalizing lysosomes. Meanwhile, tamoxifen-resistant MCF7 achieved by long-term tamoxifen pressure exhibited both upregulated transcription and protein level of PRLR. Immunotoxin N8-PE24 enhanced sensitivity of breast cancer cells to tamoxifen both in vitro and in vivo. In xenograft models, N8-PE24 significantly enhanced the efficacy of tamoxifen and paclitaxel when treating PRLR-positive triple-negative breast cancer. CONCLUSIONS: PRL-PRLR axis potentially associates with tamoxifen insensitivity in ERα-positive breast cancer cells. N8-PE24 could inhibit cell growth of the breast cancers and promote drug sensitivity of PRLR-positive breast cancer cells to tamoxifen and paclitaxel. Our study provides a new perspective for targeting PRLR to treat breast cancer.
Asunto(s)
Neoplasias de la Mama , Inmunotoxinas , Receptores de Prolactina , Tamoxifeno , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Animales , Receptores de Prolactina/metabolismo , Receptores de Prolactina/genética , Ratones , Inmunotoxinas/farmacología , Inmunotoxinas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Resistencia a Antineoplásicos , Proliferación Celular , ApoptosisRESUMEN
Neural cell adhesion molecule L1 (L1CAM) is a cell-surface glycoprotein involved in cancer occurrence and migration. Up to today, L1CAM-targeted therapy appeared limited efficacy in clinical trials although quite a few attempts by monoclonal antibody (mAb) or chimeric antigen receptor T-cell therapy (CAR-T) have been reported. Therefore, the development of new effective therapies targeting L1CAM is highly desirable. It has been demonstrated that T cell-engaging bispecific antibody (TCE) plays an effective role in cancer immunotherapy by redirecting the cytotoxic activity of CD3+ T cells to tumor cells, resulting in tumor cell death. In this study, we designed and characterized a novel bispecific antibody (CE7-TCE) based on the IgG-(L)-ScFv format, which targets L1CAM and CD3 simultaneously. In vitro, CE7-TCE induced specific killing of L1CAM-positive tumor cells through T cells. In vivo, CE7-TCE inhibited tumor growth in human peripheral blood mononuclear cell/tumor cell co-grafting models. To overcome the adaptive immune resistance (AIR) that impairs the efficacy of TCEs, we conducted a combination therapy of CE7-TCE with Pembrolizumab (anti-PD1 mAb), which enhanced the anti-tumor activity of CE7-TCE. Our results confirmed the feasibility of using L1CAM as a TCE target for the treatment of solid tumors and revealed the therapeutic potential of CE7-TCE combined with immune checkpoint inhibitors.
Asunto(s)
Anticuerpos Biespecíficos , Molécula L1 de Adhesión de Célula Nerviosa , Linfocitos T , Animales , Femenino , Humanos , Ratones , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/inmunología , Antineoplásicos Inmunológicos/farmacología , Complejo CD3/inmunología , Línea Celular Tumoral , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Molécula L1 de Adhesión de Célula Nerviosa/inmunología , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Human T cell leukemia virus type 1 and type 2 (HTLV-1 and -2) are two closely related retroviruses with the former causing adult T cell leukemia. HTLV-2 infection is prevalent among intravenous drug users, and the viral genome encodes the viral transactivator Tax, which is highly homologous to the transforming protein Tax from HTLV-1. However, the link between HTLV-2 infection and leukemia has not been established. In the present study, we evaluated the activity of HTLV-2 Tax in promoting aberrant proliferation of human CD4 T lymphocytes. Tax2 efficiently immortalized CD4(+) memory T lymphocytes with a CD3/TCRαß/CD4/CD25/CD45RO/CD69 immunophenotype, promoted constitutive activation of PI3K/Akt, IκB kinase/NF-κB, mitogen-activated protein kinase, and STAT3, and it also increased the level of Mcl-1. Disruption of these oncogenic pathways led to growth retardation and apoptotic cell death of the Tax2-established T cell lines. We further found that Tax2 induced autophagy by interacting with the autophagy molecule complex containing Beclin1 and PI3K class III to form the LC3(+) autophagosome. Tax2-mediated autophagy promoted survival and proliferation of the immortalized T cells. The present study demonstrated the oncogenic properties of Tax2 in human T cells and also implicated Tax2 in serving as a molecular tool to generate distinct T cell subtype lines.
Asunto(s)
Autofagia , Linfocitos T CD4-Positivos/metabolismo , Transformación Celular Viral , Productos del Gen tax/metabolismo , Virus Linfotrópico T Tipo 2 Humano/metabolismo , Memoria Inmunológica , Antígenos CD/genética , Antígenos CD/metabolismo , Linfocitos T CD4-Positivos/patología , Línea Celular , Proliferación Celular , Supervivencia Celular/genética , Activación Enzimática/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Productos del Gen tax/genética , Infecciones por HTLV-II/genética , Infecciones por HTLV-II/metabolismo , Infecciones por HTLV-II/patología , Virus Linfotrópico T Tipo 2 Humano/genética , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Leucemia de Células T/genética , Leucemia de Células T/metabolismo , Leucemia de Células T/patología , Leucemia de Células T/virología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismoRESUMEN
Organ fibrosis is a pathological process of fibroblast activation and excessive deposition of extracellular matrix after persistent tissue injury and therefore is a common endpoint of many organ pathologies. Multiple cellular types and soluble mediators, including chemokines, cytokines and non-peptidic factors, are implicated in fibrogenesis and the remodeling of tissue architecture. The molecular basis of the fibrotic process is complex and consists of closely intertwined signaling networks. Research has strived for a better understanding of these pathological mechanisms to potentially reveal novel therapeutic targets for fibrotic diseases. In light of new knowledge, the receptor for advanced glycation end products (RAGE) emerged as an important candidate for the regulation of a wide variety of cellular functions related to fibrosis, including inflammation, cell proliferation, apoptosis, and angiogenesis. RAGE is a pattern recognition receptor that binds a broad range of ligands such as advanced glycation end products, high mobility group box-1, S-100 calcium-binding protein and amyloid beta protein. Although the link between RAGE and fibrosis has been established, the exact mechanisms need be investigated in further studies. The aim of this review is to collect all available information about the intricate function of RAGE and its signaling cascades in the pathogenesis of fibrotic diseases within different organs. In addition, to the major ligands and signaling pathways, we discuss potential strategies for targeting RAGE in fibrosis. We emphasize the functional links between RAGE, inflammation and fibrosis that may guide further studies and the development of improved therapeutic drugs.
Asunto(s)
Péptidos beta-Amiloides , Productos Finales de Glicación Avanzada , Humanos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Inflamación/metabolismo , FibrosisRESUMEN
CD22, as the B-cell malignancies antigen, has been targeted for immunotherapies through CAR-T cells, antibody-drug conjugates (ADCs) and immunotoxins via interaction of antibodies with binding domains on the receptor. We hypothesized that avidity and binding domain of antibody to target cells may have significant impact on the biological function in tumor immunotherapy, and T cell-engaging bispecific antibody (TCB) targeting CD22 could be used in the therapy of hematologic malignancies. So, to address the question, we utilized the information of six previously reported CD22 mAbs to generate CD22-TCBs with different avidity to different domains on CD22 protein. We found that the avidity of CD22-TCBs to protein was not consistent with the avidity to target cells, indicating that TCBs had different binding mode to the protein and cells. In vitro results indicated that CD22-TCBs mediated cytotoxicity depended on the avidity of antibodies to target cells rather than to protein. Moreover, distal binding domain of the antigen contributed to the avidity and biological activity of IgG-[L]-scfv-like CD22-TCBs. The T cells' proliferation, activation, cytotoxicity as well as cytokine release were compared, and G5/44 BsAb was selected for further in vivo assessment in anti-tumor activity. In vivo results demonstrated that CD22-TCB (G5/44 BsAb) significantly inhibited the tumors growth in mice. All these data suggested that CD22-TCBs could be developed as a promising candidate for B-cell malignancies therapy through optimizing the design with avidity and binding domain to CD22 target in consideration.
RESUMEN
S100A6, as a member of S100 protein family, have biological functions in cell proliferation, differentiation, morphology, cytoskeletal organization and apoptosis. In the last three decades, S100A6 has been caught more and more attention. Here, we introduced a simple and efficient method for producing high-purity recombinant human S100A6 from Escherichia coli culture with low level of endotoxin. We further demonstrated its biological activities for triggering SH-SY5Y cells apoptosis in vitro. These results can facilitate the study of physiological and pathological roles of S100A6 and other members of S100 family proteins.
Asunto(s)
Proteínas de Ciclo Celular/biosíntesis , Escherichia coli/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas S100/biosíntesis , Apoptosis/efectos de los fármacos , Secuencia de Bases , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/aislamiento & purificación , Proteínas de Ciclo Celular/farmacología , Línea Celular Tumoral , Escherichia coli/genética , Humanos , Datos de Secuencia Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Proteína A6 de Unión a Calcio de la Familia S100 , Proteínas S100/química , Proteínas S100/aislamiento & purificación , Proteínas S100/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
T cell engaging bispecific antibody (TCB) is an effective immunotherapy for cancer treatment. Through co-targeting CD3 and tumor-associated antigen (TAA), TCB can redirect CD3+ T cells to eliminate tumor cells regardless of the specificity of T cell receptor. Tissue factor (TF) is a TAA that involved in tumor progression. Here, we designed and characterized a novel TCB targeting TF (TF-TCB) for the treatment of TF-positive tumors. In vitro, robust T cell activation, tumor cell lysis and T cell proliferation were induced by TF-TCB. The tumor cell lysis activity was dependent upon both CD3 and TF binding moieties of the TF-TCB, and was related to TF expression level of tumor cells. In vivo, in both tumor cell/human peripheral blood mononuclear cells (PBMC) co-grafting model and established tumor models with poor T cell infiltration, tumor growth was strongly inhibited by TF-TCB. T cell infiltration into tumors was induced during the treatment. Furthermore, efficacy of TF-TCB was further improved by combination with immune checkpoint inhibitors. For the first time, our results validated the feasibility of using TF as a target for TCB and highlighted the potential for TF-TCB to demonstrate efficacy in solid tumor treatment.
RESUMEN
New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appear rapidly every few months. They have showed powerful adaptive ability to circumvent the immune system. To further understand SARS-CoV-2's adaptability so as to seek for strategies to mitigate the emergence of new variants, herein we investigated the viral adaptation in the presence of broadly neutralizing antibodies and their combinations. First, we selected four broadly neutralizing antibodies, including pan-sarbecovirus and pan-betacoronavirus neutralizing antibodies that recognize distinct conserved regions on receptor-binding domain (RBD) or conserved stem-helix region on S2 subunit. Through binding competition analysis, we demonstrated that they were capable of simultaneously binding. Thereafter, a replication-competent vesicular stomatitis virus pseudotyped with SARS-CoV-2 spike protein was employed to study the viral adaptation. Twenty consecutive passages of the virus under the selective pressure of individual antibodies or their combinations were performed. It was found that it was not hard for the virus to adapt to broadly neutralizing antibodies, even for pan-sarbecovirus and pan-betacoronavirus antibodies. The virus was more and more difficult to escape the combinations of two/three/four antibodies. In addition, mutations in the viral population revealed by high-throughput sequencing showed that under the selective pressure of three/four combinational antibodies, viral mutations were not prone to present in the highly conserved region across betacoronaviruses (stem-helix region), while this was not true under the selective pressure of single/two antibodies. Importantly, combining neutralizing antibodies targeting RBD conserved regions and stem helix synergistically prevented the emergence of escape mutations. These studies will guide future vaccine and therapeutic development efforts and provide a rationale for the design of RBD-stem helix tandem vaccine, which may help to impede the generation of novel variants.
Asunto(s)
Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , SARS-CoV-2 , Humanos , Anticuerpos Antivirales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , COVID-19/inmunología , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genéticaRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) continue to wreak havoc across the globe. Higher transmissibility and immunologic resistance of VOCs bring unprecedented challenges to epidemic extinguishment. Here we describe a monoclonal antibody, 2G1, that neutralizes all current VOCs and has surprising tolerance to mutations adjacent to or within its interaction epitope. Cryo-electron microscopy structure showed that 2G1 bound to the tip of receptor binding domain (RBD) of spike protein with small contact interface but strong hydrophobic effect, which resulted in nanomolar to sub-nanomolar affinities to spike proteins. The epitope of 2G1 on RBD partially overlaps with angiotensin converting enzyme 2 (ACE2) interface, which enables 2G1 to block interaction between RBD and ACE2. The narrow binding epitope but high affinity bestow outstanding therapeutic efficacy upon 2G1 that neutralized VOCs with sub-nanomolar half maximal inhibitory concentration in vitro. In SARS-CoV-2, Beta or Delta variant-challenged transgenic mice and rhesus macaque models, 2G1 protected animals from clinical illness and eliminated viral burden, without serious impact to animal safety. Mutagenesis experiments suggest that 2G1 is potentially capable of dealing with emerging SARS-CoV-2 variants in the future. This report characterized the therapeutic antibodies specific to the tip of spike against SARS-CoV-2 variants and highlights the potential clinical applications as well as for developing vaccine and cocktail therapy.