Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 21(10): 1111-1115, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35835819

RESUMEN

Room-temperature realization of macroscopic quantum phases is one of the major pursuits in fundamental physics1,2. The quantum spin Hall phase3-6 is a topological quantum phase that features a two-dimensional insulating bulk and a helical edge state. Here we use vector magnetic field and variable temperature based scanning tunnelling microscopy to provide micro-spectroscopic evidence for a room-temperature quantum spin Hall edge state on the surface of the higher-order topological insulator Bi4Br4. We find that the atomically resolved lattice exhibits a large insulating gap of over 200 meV, and an atomically sharp monolayer step edge hosts an in-gap gapless state, suggesting topological bulk-boundary correspondence. An external magnetic field can gap the edge state, consistent with the time-reversal symmetry protection inherent in the underlying band topology. We further identify the geometrical hybridization of such edge states, which not only supports the Z2 topology of the quantum spin Hall state but also visualizes the building blocks of the higher-order topological insulator phase. Our results further encourage the exploration of high-temperature transport quantization of the putative topological phase reported here.

2.
Phys Rev Lett ; 116(9): 096801, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26991191

RESUMEN

A Weyl semimetal is a new state of matter that hosts Weyl fermions as quasiparticle excitations. The Weyl fermions at zero energy correspond to points of bulk-band degeneracy, called Weyl nodes, which are separated in momentum space and are connected only through the crystal's boundary by an exotic Fermi arc surface state. We experimentally measure the spin polarization of the Fermi arcs in the first experimentally discovered Weyl semimetal TaAs. Our spin data, for the first time, reveal that the Fermi arcs' spin-polarization magnitude is as large as 80% and lies completely in the plane of the surface. Moreover, we demonstrate that the chirality of the Weyl nodes in TaAs cannot be inferred by the spin texture of the Fermi arcs. The observed nondegenerate property of the Fermi arcs is important for establishing its exact topological nature, which reveals that spins on the arc form a novel type of 2D matter. Additionally, the nearly full spin polarization we observed (∼80%) may be useful in spintronic applications.

3.
Sci Bull (Beijing) ; 65(1): 21-26, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36659064

RESUMEN

The metallic tip-induced superconductivity in normal Weyl semimetal offers a promising platform to study topological superconductivity, which is currently a research focus in condensed matter physics. Here we experimentally uncover that unconventional superconductivity can be induced by hard point contact (PC) method of ferromagnetic tips in TaAs single crystals. The magneto-transport measurements of the ferromagnetic tip-induced superconducting (FTISC) states exhibit the quantum oscillations, which reveal that the superconductivity is induced in the topologically nontrivial Fermi surface of the Weyl semimetal, and show compatibility of ferromagnetism and induced superconductivity. We further measure the point contact spectra (PCS) of tunneling transport for FTISC states which are potentially of nontrivial topology. Considering that the magnetic Weyl semimetal with novel superconductivity is hard to realize in experiment, our results show a new route to investigate the unconventional superconductivity by combining the topological semimetal with ferromagnetism through hard PC method.

4.
Nat Commun ; 10(1): 1028, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833678

RESUMEN

Detecting the spectroscopic signatures of relativistic quasiparticles in emergent topological materials is crucial for searching their potential applications. Magnetometry is a powerful tool for fathoming electrons in solids, by which a clear method for discerning relativistic quasiparticles has not yet been established. Adopting the probes of magnetic torque and parallel magnetization for the archetype Weyl semimetal TaAs in strong magnetic field, we observed a quasi-linear field dependent effective transverse magnetization and a non-saturating parallel magnetization when the system enters the quantum limit. Distinct from the saturating magnetic responses for non-relativistic quasiparticles, the non-saturating signals of TaAs in strong field is consistent with our newly developed magnetization calculation for a Weyl fermion system in an arbitrary angle. Our results establish a high-field thermodynamic method for detecting the magnetic response of relativistic quasiparticles in topological materials.

5.
Sci Bull (Beijing) ; 62(6): 425-430, 2017 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36659286

RESUMEN

Weyl fermion is a massless Dirac fermion with definite chirality, which has been long pursued since 1929. Though it has not been observed as a fundamental particle in nature, Weyl fermion can be realized as low-energy excitation around Weyl point in Weyl semimetal, which possesses Weyl fermion cones in the bulk and nontrivial Fermi arc states on the surface. As a firstly discovered Weyl semimetal, TaAs crystal possesses 12 pairs of Weyl points in the momentum space, which are topologically protected against small perturbations. Here, we report for the first time the tip induced superconductivity on TaAs crystal by point contact spectroscopy. The zero bias conductance peak as well as a conductance plateau with double conductance peaks and sharp double dips are observed in the point contact spectra simultaneously, indicating unconventional superconductivity. Our further theoretical study suggests that the induced superconductivity may have nontrivial topology. The present work opens a new route in investigating the novel superconducting states based on Weyl materials.

6.
Nat Commun ; 7: 10556, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26829889

RESUMEN

Topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems.

7.
Nat Commun ; 7: 10735, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26911701

RESUMEN

Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most unusual one. Here, we report signatures of the chiral anomaly in the magneto-transport measurements on the first Weyl semimetal TaAs. We show negative magnetoresistance under parallel electric and magnetic fields, that is, unlike most metals whose resistivity increases under an external magnetic field, we observe that our high mobility TaAs samples become more conductive as a magnetic field is applied along the direction of the current for certain ranges of the field strength. We present systematically detailed data and careful analyses, which allow us to exclude other possible origins of the observed negative magnetoresistance. Our transport data, corroborated by photoemission measurements, first-principles calculations and theoretical analyses, collectively demonstrate signatures of the Weyl fermion chiral anomaly in the magneto-transport of TaAs.

8.
Science ; 349(6248): 613-7, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26184916

RESUMEN

A Weyl semimetal is a new state of matter that hosts Weyl fermions as emergent quasiparticles and admits a topological classification that protects Fermi arc surface states on the boundary of a bulk sample. This unusual electronic structure has deep analogies with particle physics and leads to unique topological properties. We report the experimental discovery of a Weyl semimetal, tantalum arsenide (TaAs). Using photoemission spectroscopy, we directly observe Fermi arcs on the surface, as well as the Weyl fermion cones and Weyl nodes in the bulk of TaAs single crystals. We find that Fermi arcs terminate on the Weyl fermion nodes, consistent with their topological character. Our work opens the field for the experimental study of Weyl fermions in physics and materials science.

9.
Sci Adv ; 1(10): e1501092, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26702446

RESUMEN

Weyl semimetals are expected to open up new horizons in physics and materials science because they provide the first realization of Weyl fermions and exhibit protected Fermi arc surface states. However, they had been found to be extremely rare in nature. Recently, a family of compounds, consisting of tantalum arsenide, tantalum phosphide (TaP), niobium arsenide, and niobium phosphide, was predicted as a Weyl semimetal candidates. We experimentally realize a Weyl semimetal state in TaP. Using photoemission spectroscopy, we directly observe the Weyl fermion cones and nodes in the bulk, and the Fermi arcs on the surface. Moreover, we find that the surface states show an unexpectedly rich structure, including both topological Fermi arcs and several topologically trivial closed contours in the vicinity of the Weyl points, which provides a promising platform to study the interplay between topological and trivial surface states on a Weyl semimetal's surface. We directly demonstrate the bulk-boundary correspondence and establish the topologically nontrivial nature of the Weyl semimetal state in TaP, by resolving the net number of chiral edge modes on a closed path that encloses the Weyl node. This also provides, for the first time, an experimentally practical approach to demonstrating a bulk Weyl fermion from a surface state dispersion measured in photoemission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA