Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Analyst ; 146(7): 2212-2220, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33595018

RESUMEN

Evident from numerous studies, cysteine plays a crucial role in cellular function. Reactions with analyte also enables for molecular recognition to adhere to molecular therapeutic potential; integration between synthetic probes therefore allows for a potentially deep therapy-related interogation of biological systems (theranostics). The development of molecular cysteine probes with extremely accurate detection is still a key challenge for the field. The development of water-soluble organic molecular fluorescent probes able to efficiently distinguish common biothiols such as cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) by chemical recognition means i.e. by (binding, cleavage) in biological systems is a greatly sought research challenge due to the similarity of the small sulfhydryl-containing species. Herein, we have developed a water-soluble and highly cell viable fluorescent organic molecule (log P = 0.82) for the selective detection of cysteine. The probe (Myco-Cys) shows a "turn-on" response with the cleavage ester linkage of the methacrylate as cysteine is encountered in solution. The probe shows strong fluorescence enhancement (16.5-fold) when treated with Cys (1 equiv., 10 µM) compared to closely related species such as amino acids, including HCy/GSH, and the limit of detection was determined as 45.0 nM. DFT calculations helped confirm the photomechanism of Myco-Cys. Furthermore, the sensing ability of the probe was demonstrated by living cell assays through the use of confocal fluorescence microscopy. Myco-Cys could selectively detect cysteine among biothiols. Myco-Cys was able to monitor the cysteine level, apart from the oxidative stress present in the form of H2O2 in A549 cells.


Asunto(s)
Cisteína , Ácido Micofenólico , Colorantes Fluorescentes , Glutatión , Células HeLa , Homocisteína , Humanos , Peróxido de Hidrógeno , Metacrilatos , Metilmetacrilato , Imagen Óptica , Espectrometría de Fluorescencia , Agua
2.
Small Methods ; 7(4): e2201452, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36808832

RESUMEN

The performance of fluorescence immunostaining is physically limited by the brightness of organic dyes, whereas fluorescence labeling with multiple dyes per antibody can lead to dye self-quenching. The present work reports a methodology of antibody labeling by biotinylated zwitterionic dye-loaded polymeric nanoparticles (NPs). A rationally designed hydrophobic polymer, poly(ethyl methacrylate) bearing charged, zwitterionic and biotin groups (PEMA-ZI-biotin), enables preparation of small (14 nm) and bright fluorescent biotinylated NPs loaded with large quantities of cationic rhodamine dye with bulky hydrophobic counterion (fluorinated tetraphenylborate). The biotin exposure at the particle surface is confirmed by Förster resonance energy transfer with dye-streptavidin conjugate. Single-particle microscopy validates specific binding to biotinylated surfaces, with particle brightness 21-fold higher than quantum dot-585 (QD-585) at 550 nm excitation. The nanoimmunostaining method, which couples biotinylated antibody (cetuximab) with bright biotinylated zwitterionic NPs through streptavidin, significantly improves fluorescence imaging of target epidermal growth factor receptors (EGFR) on the cell surface compared to a dye-based labeling. Importantly, cetuximab labeled with PEMA-ZI-biotin NPs can differentiate cells with distinct expression levels of EGFR cancer marker. The developed nanoprobes can greatly amplify the signal from labeled antibodies, and thus become a useful tool in the high-sensitivity detection of disease biomarkers.


Asunto(s)
Colorantes Fluorescentes , Nanopartículas , Colorantes Fluorescentes/química , Biotina/química , Biotina/metabolismo , Estreptavidina/química , Estreptavidina/metabolismo , Cetuximab , Nanopartículas/química , Polímeros/química
3.
Methods Enzymol ; 640: 267-289, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32560802

RESUMEN

We describe the pertinent research steps and analysis, many of which are chemical, to achieve a novel molecular probe for glutathione (GSH) which has been published and patented based on two recent articles: "Exceptional time response, stability and selectivity in doubly-activated phenyl selenium-based glutathione-selective platform" and "Enhanced Doubly Activated Dual Emission Fluorescent Probes for Selective Imaging of Glutathione or Cysteine in Living Systems" (Kim et al., 2015; Mulay et al., 2018). The papers involve coumarin probes. Reaction/detection unfolds with aminothiol attack at an electrophilic ring carbon position. An adjacent -CHO group is heavily involved in resonance aspects of the C-Se position, as well as the binding of the pendant N-group; the coumarin lactone carbonyl also allows for resonance to be achieved (vide infra). The leaving group, -SePh, while precedented in some systems, depends on electronic tuning (Fig. 1). For 1, the response times with GSH was ~100ms; a 100-fold fluorescence increase is observed (Compound 1). The probe also reacts with cysteine (Cys) and homocysteine (Hcy), albeit differently. For glutathione probing, the greater wavelength maxima (1: 550nm, DACP-1: 555nm, DACP-2: 590nm) enabled eventual cell studies (confocal microscopy) and animal studies. The limits of detection (LOD, 1: 270nM DACP-1: 10.1nM DACP-2: 17.0nM), as measured using the 3σ/k method. We provide a didactic presentation from probe conception to probe in vivo testing, etc., with additional considerations presented; a variety of factors/issues (2.1-2.28) help maintain a realistic sequence, a flow from wider to narrower, of the factors that go into developing medical, biological and neurodegenerative disease-related probes, meant to help other researchers follow our intention, gain perspective, and overcome current limitations.


Asunto(s)
Enfermedades Neurodegenerativas , Selenio , Aldehídos , Animales , Cumarinas , Cisteína , Colorantes Fluorescentes , Glutatión , Células HeLa , Humanos
4.
Chem Asian J ; 14(18): 3048-3084, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31347256

RESUMEN

In recent decades, HOCl research has attracted a lot of scientists from around the world. This chemical species is well known as an important player in the biological systems of eukaryotic organisms including humans. In the human body, HOCl is produced by the myeloperoxidase enzyme from superoxide in very low concentrations (20 to 400 µm); this species is secreted by neutrophils and monocytes to help fight pathogens. However, in the condition called "oxidative stress", HOCl has the capability to attack many important biomolecules such as amino acids, proteins, nucleotides, nucleic acids, carbohydrates, and lipids; these reactions could ultimately contribute to a number of diseases such as neurodegenerative diseases (AD, PD, and ALS), cardiovascular diseases, and diabetes. In this review, we discuss recent efforts by scientists to synthesize various fluorophores which are attached to receptors to detect HOCl such as: chalcogen-based oxidation, oxidation of 4-methoxyphenol, oxime/imine, lactone ring opening, and hydrazine. These synthetic molecules, involving rational synthetic pathways, allow us to chemoselectively target HOCl and to study the level of HOCl selectivity through emission responses. Virtually all the reports here deal with well-defined and small synthetic molecular systems. A large number of published compounds have been reported over the past years; this growing field has given scientists new insights regarding the design of the chemosensors. Reversibility, for example is considered important from the stand point of chemosensor reuse within the biological system; facile regenerability using secondary analytes to obtain the initial probe is a very promising avenue. Another aspect which is also important is the energy of the emission wavelength of the sensor; near-infrared (NIR) emission is favorable to prevent autofluorescence and harmful irradiation of tissue; thus, extended applicability of such sensors can be made to the mouse model or animal model to help image internal organs. In this review, we describe several well-known types of receptors that are covalently attached to the fluorophore to detect HOCl. We also discuss the common fluorophores which are used by chemist to detect HOCl, Apart from the chemical aspects, we also discuss the capabilities of the compounds to detect HOCl in living cells as measured through confocal imaging. The growing insight from HOCl probing suggests that there is still much room for improvement regarding the available molecular designs, knowledge of interplay between analytes, biological applicability, biological targeting, and chemical switching, which can also serve to further sensor and theurapeutic agent development alike.


Asunto(s)
Enfermedades Cardiovasculares/diagnóstico por imagen , Diabetes Mellitus/diagnóstico por imagen , Colorantes Fluorescentes/química , Ácido Hipocloroso/química , Enfermedades Neurodegenerativas/diagnóstico por imagen , Imagen Óptica , Fluorescencia , Humanos , Microscopía Confocal
5.
Chem Asian J ; 13(24): 3895-3902, 2018 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-30300960

RESUMEN

A simple one-step synthesis of fluorescent probe HemiSe has been developed for the detection of superoxide (O2 .- ). The probe undergoes reaction specifically with O2 .- when in the presence of other competitive ROS/RNS/metal ions. The diphenylselenide was incorporated to completely quench the fluorescence of the hemicyanine unit through the action of a photoinduced electron transfer (PET) photomechanism. However, after the addition of O2 .- , the latent fluorophore regains its fluorescence owing to the reaction at the C=C bond of the hemicyanine with O2 .- through nucleophilic attack; the increase in blue emission is due to a reaction of the double bond within HemiSe followed by an increase in fluorescence quantum yield (Φ) up to 0.45; the limit of detection (LOD) is 11.9 nm. A time-dependent study shows that HemiSe can detect superoxide within 13 min with high sensitivity, high selectivity, over a wide pH range, and through confirmation with a xanthine/xanthine oxidase biochemical assay (λem =439 nm). A study in the RAW 264.7 macrophage living cells also shows that HemiSe is not toxic, cell permeable (experimental log P=2.11); confocal imaging results show that HemiSe can detect O2 .- in endogenous and exogeneous systems.


Asunto(s)
Carbocianinas/química , Colorantes Fluorescentes/química , Compuestos de Organoselenio/química , Superóxidos/análisis , Animales , Ratones , Microscopía Confocal/métodos , Imagen Óptica/métodos , Oxidación-Reducción , Células RAW 264.7 , Espectrometría de Fluorescencia/métodos
6.
ACS Omega ; 3(10): 13474-13483, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30411040

RESUMEN

Hypochlorous (OCl-) acid is the most well-known bacterial oxidant to be produced by neutrophils. Excess amounts of OCl- can cause various disorders in living systems. Herein, we have designed, synthesized, and characterized two novel organoselenium-based target molecules (Probe-1 and Probe-OCl) based on a synthetic intermediate of mycophenolic acid for the aqueous detection of OCl-. Probe 1 has been recently reported (Org. Lett. 2018, 20, 3557-3561); both probes show immediate "turn-on" fluorescence (<1 s) upon the addition of OCl-, display an increase in the fluorescence quantum yield (3.7-fold in Probe-1 and 11.6-fold in Probe-OCl), and are completely soluble in aqueous media without the help of any cosolvent. However, a decrease in the "turn-on" intensity with the oxidized version of Probe-1 in cell assays due to the anhydride/phthalate functionality suggests that probe degradation occurs based on hydrolytic action (a probe degradation half-life of ∼1500 s at 15 µM Probe-1 and 150 µM OCl). Thus, the change of "anhydride" to "methylamide" begets Probe-OCl, which possesses more stability without sacrificing its water solubility properties and responses at short times. Further studies suggest that Probe-OCl is highly stable within physiological pH (pH = 7.4). Surprisingly, in live cell experiments involving U-2 OS cells and HeLa cells, Probe-OCl accumulated and aggregated in lipid droplets and gives a "turn-on" fluorescence response. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays confirmed that Probe-OCl is not toxic. Cuvette aggregation studies were also performed (tetrahydrofuran/H2O) to demonstrate aggregation-induced fluorescence at longer times. Our current hypothesis is that the "turn-on" fluorescence effect is caused by the aggregation-induced emission mechanism available for Probe-OCl. In this case, in tandem, we reanalyzed the Mes-BOD-SePh derivative to compare and contrast cell localization as imaged by confocal microscopy; fluorescence emission occurs in the absence of, or prior to, Se oxidation.

7.
Org Lett ; 20(12): 3557-3561, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29809015

RESUMEN

A short, protecting-group-free synthesis is achieved. The synthesis is step-efficient and general. A Diels-Alder and Stille cross-coupling approach includes key transformations, allowing for a competitive synthesis which involves a rare halophenol Stille cross-coupling study. The phenylselenyl and phenylsulfenyl analogues were prepared as novel compounds in good overall yield. The applicability of one of the intermediates as a potential probe for reactive oxygen species (ROS) in water is investigated.

8.
Chem Asian J ; 12(15): 1927-1934, 2017 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-28493382

RESUMEN

The role of fluorescent molecules in diagnosis, treatment as well as in biomedical research has great current medicinal significance and is the focus of concentrated effort across the scientific research spectrum. Related research continues to reveal new practical sensing systems that bear enhanced features for interfacing of substituted molecules with biological systems. As part of an effort to better understand chalcogenide systems, a new dithiomaleimide BODIPY (BDP-NGM) probe has been designed, synthesized and characterized. The fluorescence of BDP-NGM was quenched by the incorporation of [3,4-bis(phenylthio)] on the maleimide-4-phenyl moiety which is, in turn, placed at the meso-position of the BODIPY system. The probe shows a turn-on fluorescence response upon reaction with ONOO- ; mass spectral evidence reveals peaks in agreement with products involving oxidation of the sulfur groups to sulfone groups. An about 18.0-fold emission intensity enhancement was found. By comparison, the emission signal from another ROS/RNS, superoxide, gave a modest turn on signal (≈5.0-fold). The reaction is complete within 10 min, judging from the monitoring of the turn-on fluorescence process; the detection limit was found to be 0.4 µm. BDP-NGM can be used for the detection of ONOO- under both acidic and basic conditions. Live cell imaging showed that the current probe can be used for the selective detection of ONOO- in living systems.


Asunto(s)
Ácidos Mandélicos/química , Ácido Peroxinitroso/análisis , Ácido Peroxinitroso/química , Compuestos de Sulfhidrilo/química , Animales , Compuestos de Boro/química , Supervivencia Celular , Fluorescencia , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Células HeLa , Humanos , Ratones , Células RAW 264.7
9.
Chem Asian J ; 11(24): 3598-3605, 2016 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-27863045

RESUMEN

Small-molecule organoselenium-based fluorescent probes possess great capacity in understanding biological processes through the detection of various analytes such as reactive oxygen/nitrogen species (ROS/RNS), biothiols (cysteine, homocysteine and glutathione), lipid droplets, etc. Herein, we present how substituents on the BODIPY system play a significant part in the detection of biologically important analytes for in vitro conditions and live cell imaging studies. The fluorescence of the probe was quenched by 2-chloro and 6-phenyl selenium groups; the probe shows high selectivity with NaOCl among other ROS/RNS, and gives a turn-on response. The maximum fluorescence intensity is attained within ≈1-2 min with a low detection limit (19.6 nm), and shows a ≈110-fold fluorescence enhancement compared to signals generated for other ROS/RNS. Surprisingly, in live cell experiments, the probe specifically located and accumulated in lipid droplets, and showed a fluorescence turn-on response. We believe this turn-on response occurred because of aggregation-induced emission (AIE), which surprisingly occurred only by introducing one lipophilic mesityl group at the meso position of the BODIPY.


Asunto(s)
Compuestos de Boro/química , Colorantes Fluorescentes/química , Compuestos de Organoselenio/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Luz , Microscopía Confocal , Compuestos de Organoselenio/síntesis química , Compuestos de Organoselenio/uso terapéutico , Teoría Cuántica , Especies de Nitrógeno Reactivo/química , Especies Reactivas de Oxígeno/química , Selenio/química , Espectrometría de Fluorescencia , Células Madre/citología , Células Madre/efectos de los fármacos , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA