Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(45): 17629-17639, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37906720

RESUMEN

This study provided an in-depth understanding of enhanced algae inactivation by combining ultraviolet and peracetic acid (UV/PAA) and selecting Microcystis aeruginosa as the target algae species. The electron paramagnetic resonance (EPR) tests and scavenging experiments provided direct evidence on the formed reactive species (RSs) and indicated the dominant role of RSs including singlet oxygen (1O2) and hydroxyl (HO•) and organic (RO•) radicals in algae inactivation. Based on the algae inactivation kinetic model and the determined steady-state concentration of RSs, the contribution of RSs was quantitatively assessed with the second-order rate constants for the inactivation of algae by HO•, RO•, and 1O2 of 2.67 × 109, 3.44 × 1010, and 1.72 × 109 M-1 s-1, respectively. Afterward, the coexisting bi/carbonate, acting as a shuttle, that promotes the transformation from HO• to RO• was evidenced to account for the better performance of the UV/PAA system in algae inactivation under the natural water background. Subsequently, along with the evaluation of the UV/PAA preoxidation to modify coagulation-sedimentation, the possible application of the UV/PAA process for algae removal was advanced.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Rayos Ultravioleta , Ácido Peracético/farmacología , Agua , Peróxido de Hidrógeno , Oxidación-Reducción
2.
Environ Sci Technol ; 57(28): 10478-10488, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37389809

RESUMEN

Environmental-friendly and low-cost catalysts for peracetic acid (PAA) activation are vital to promote their application for micropollutant degradation in water. In this study, powdered activated carbon (PAC) was reported to improve the degradation of sulfamethoxazole (SMX). The improvement of SMX degradation in the PAC/PAA system was expected to be because of the PAA activation rather than the co-existing H2O2 activation. Non-radical oxidation pathways, including the mediated electron-transfer process and singlet oxygen (1O2), were evidenced to play the dominant roles in the degradation of micro-organic pollutants. The graphitization of PAC, persistent free radicals, and electron-donating groups like C-OH were proposed to contribute to the activation of PAA. High SMX degradation could be achieved in the acidic and neutral conditions in the PAC/PAA system. Overall, higher dosages of PAC (0-0.02 g/L) and PAA (0-100 µM) benefited the degradation of SMX. The presence of HCO3- could lower the SMX degradation significantly, while Cl-, PO43-, and humic acid (HA) only reduced the SMX degradation efficiency a little. Overall, this study offered an efficient non-radical PAA activation method using PAC, which can be effectively used to degrade micro-organic pollutants.


Asunto(s)
Ácido Peracético , Contaminantes Químicos del Agua , Sulfametoxazol , Peróxido de Hidrógeno , Carbón Orgánico , Oxidación-Reducción
3.
Environ Sci Technol ; 47(24): 14051-61, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24237350

RESUMEN

Aqueous suspensions of Microcystis aeruginosa were preoxidized with either ozone or permanganate and then subjected to chlorination under conditions simulating drinking water purification. The impacts of the two oxidants on the algal cells and on the subsequent production of dissolved organic matter and disinfection byproducts were investigated. Preozonation dramatically increased disinfection byproduct formation during chlorination, especially the formation of haloaldehydes, haloacetonitriles, and halonitromethanes. Preoxidation with permanganate had much less effect on disinfection byproduct formation. Preozonation destroyed algal cell walls and cell membranes to release intracellular organic matter (IOM), and less than 2.0% integrated cells were left after preozonation with the dosage as low as 0.4 mg/L. Preoxidation with permanganate mainly released organic matter adsorbed on the cells' surface without causing any damage to the cells' integrity, so the increase in byproduct formation was much less. More organic nitrogen and lower molecular weight precursors were produced in a dissolved phase after preozonation than permanganate preoxidation, which contributes to the significant increase of disinfection byproducts after preozonation. The results suggest that permanganate is a better choice than ozone for controlling algae derived pollutants and disinfection byproducts.


Asunto(s)
Desinfección , Halogenación , Compuestos de Manganeso/farmacología , Microcystis/citología , Microcystis/efectos de los fármacos , Óxidos/farmacología , Ozono/farmacología , Agua/química , Aminas/análisis , Aminoácidos/análisis , Carbono/análisis , Floculación/efectos de los fármacos , Compuestos de Manganeso/química , Microcystis/metabolismo , Peso Molecular , Compuestos de Nitrógeno/análisis , Oxidación-Reducción/efectos de los fármacos , Óxidos/química , Purificación del Agua
4.
Environ Sci Technol ; 46(13): 7342-9, 2012 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-22681542

RESUMEN

Most halogenated organic compounds (HOCs) are toxic and persistent, and their efficient destruction is currently a challenge. Here, we proposed a sulfite/UV (253.7 nm) process to eliminate HOCs. Monochloroacetic acid (MCAA) was selected as the target compound and was degraded rapidly in the sulfite/UV process. The degradation kinetics were accelerated proportionally to the increased sulfite concentration, while the significant enhancement by increasing pH only occurred in a pH range of 6.0-8.7. The degradation proceeded via a reductive dechlorination mechanism induced by hydrated electron (e(aq)(-)), and complete dechlorination was readily achieved with almost all the chlorine atoms in MCAA released as chloride ions. Mass balance (C and Cl) studies showed that acetate, succinate, sulfoacetate, and chloride ions were the major products, and a degradation pathway was proposed. The dual roles of pH were not only to regulate the S(IV) species distribution but also to control the interconversion between e(aq)(-) and H(•). Effective quantum efficiency (Φ) for the formation of e(aq)(-) in the process was determined to be 0.116 ± 0.002 mol/einstein. The present study may provide a promising alternative for complete dehalogenation of most HOCs and reductive detoxification of numerous toxicants.


Asunto(s)
Acetatos/aislamiento & purificación , Contaminantes Ambientales/aislamiento & purificación , Sulfitos/química , Acetatos/química , Contaminantes Ambientales/química , Restauración y Remediación Ambiental/métodos , Halogenación , Oxidación-Reducción , Rayos Ultravioleta
5.
Water Res ; 189: 116605, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33189970

RESUMEN

With the fast development of peroxymonosulfate (PMS)-dominating processes in drinking water and wastewater treatment, residual PMS is easy to come across chlorine as these processes are usually followed by secondary chlorine disinfection. The synergistic effect of PMS and chlorine on the degradation of micro-organic pollutants is investigated by selecting acetaminophen (ACT) as a reference compound for the first time in this study. Unlike conventional PMS or chlorine activation which generates reactive species such as hydroxyl radical (HO•), sulfate radical (SO4•-), chlorine radical (Cl•), and singlet oxygen (1O2), the efficient ACT removal is attributed to the direct catalytic chlorination by PMS due to the significantly enhanced consumption of chlorine along with negligible change of PMS concentration at neutral condition, and the same reaction pathways in both PMS/chlorine and chlorine processes. The kinetic study demonstrates that ACT oxidation by PMS/chlorine follows second order reaction, and the degradation efficiency can be promoted at alkaline conditions with peak rate constants at pH 9.0-10.0. The presence of chloride can enhance the removal of ACT, while ammonium and humic acid significantly retard ACT degradation. Higher formation of selected disinfection by-products (DBPs) is observed in the PMS/chlorine process than in the sole chlorination. This study highlights the important role of PMS in organic pollutants degradation and DBPs formation during the chlorination process.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Acetaminofén , Cloruros , Cloro , Desinfección , Oxidación-Reducción , Peróxidos , Contaminantes Químicos del Agua/análisis
6.
Water Res ; 201: 117291, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34107364

RESUMEN

Sulfonamide antibiotics (SAs) are typical antibiotics and have attracted increasing concerns about their wide occurrence in environment as well as potential risk for human health. In this study, we applied a novel advanced oxidation process in SAs degradation by combining molybdenum sulfide and peracetic acid (MoS2/PAA). Reactive oxygen species (ROS) including HO●, CH3C(O)O●, CH3C(O)OO●, and 1O2 were generated from PAA by MoS2 activation and contributed to SAs degradation. The effects of initial pH, the dosages of PAA and MoS2, and humic acid for SAs degradation were further evaluated by selecting sulfamethoxazole (SMX) as a target SA in the MoS2/PAA process. Results suggested that the optimum pH for SMX removal was 3, where the degradation efficiency of SMX was higher than 80% after reaction for 15 min. Increasing PAA (0.075-0.45 mM) or MoS2 (0.1-0.4 g/L) dosages facilitated the SMX degradation, while the presence of humic acids retarded the SMX removal. This MoS2/PAA process also showed good efficiencies in removing other SAs including sulfaguanidine, sulfamonomethoxine and sulfamerazine. Their possible degradation pathways were proposed based on the products identification and DFT calculation, showing that apart from the oxidation of amine groups to nitro groups in SAs, MoS2/PAA induced SO2 extrusion reaction for SAs that contained six-membered heterocyclic moieties.


Asunto(s)
Ácido Peracético , Contaminantes Químicos del Agua , Antibacterianos , Disulfuros , Humanos , Peróxido de Hidrógeno , Molibdeno , Oxidación-Reducción , Sulfametoxazol , Sulfonamidas
7.
Front Chem ; 8: 591641, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330378

RESUMEN

UV/persulfate (UV/PS) could effectively degrade algal cells and micro-organic pollutants. This process was firstly applied to remove Microcystis aeruginosa (M. aeruginosa) and 2,4,6-trichlorophenol (TCP) simultaneously in bench scale. Algal cells can be efficiently removed after 120 min reaction accompanied with far quicker removal of the coexisted TCP, which could be totally removed within 5 min in the UV/PS process. Both SO 4 • - and HO• were responsible for algal cells and TCP degradation, while SO 4 • - and HO• separately dominated TCP degradation and algal cells removal. Apart from the role of radicals ( SO 4 • - and HO•) for algal cells and TCP degradation, UV also played a role to some extent. Increased PS dose (0-4.5 mM) or UV intensity (2.71-7.82 mW/cm2) could enhance the performance of the UV/PS process in both TCP and algae removal. Although some intracellular organic matters can be released to the outside of algal cells due to the cell lysis, they can be further degraded by UV/PS process, which was inhibited by the presence of TCP. This study suggested the good potential of the UV/PS process in the simultaneous removal of algal cells and micro-organic pollutants.

8.
Chemosphere ; 233: 282-291, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31176129

RESUMEN

Degradation of imipramine (IMI) in the VUV system (VUV185 + UV254) was firstly evaluated in this study. Both HO• oxidation and UV254 direct photolysis accounted for IMI degradation. The quantum yields of UV254 direct photolysis of deprotonated and protonated IMI were 1.31×10-2 and 3.31×10-3, respectively, resulting in the higher degradation efficiency of IMI at basic condition. Increasing the initial IMI concentration lowered the degradation efficiency of IMI. While elevating reaction temperature significantly improved IMI degradation efficiency through the promotion of both the quantum yields of HO• and the UV254 direct photolysis rate. The apparent activation energy was calculated to be about 26.6 kJ mol-1. Negative-linear relationships between the kobs of IMI degradation and the concentrations of HCO3-/CO32-, NOM and Cl- were obtained. The degradation pathways were proposed that cleavage of side chain and hydroxylation of iminodibenzyl and methyl groups were considered as the initial steps for IMI degradation in the VUV system. Although some high toxic intermediate products would be produced, they can be further transformed to other lower toxic products. The good degradation efficiency of IMI under realistic water matrices further suggests that the VUV system would be a good method to degrade IMI in aquatic environment.


Asunto(s)
Imipramina/química , Imipramina/toxicidad , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Hidroxilación , Oxidación-Reducción , Photobacterium/efectos de los fármacos , Fotólisis , Pruebas de Toxicidad Aguda , Rayos Ultravioleta , Vacio , Agua/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Purificación del Agua/métodos
9.
Water Res ; 133: 69-78, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29367049

RESUMEN

Vacuum-Ultraviolet (VUV), an efficient and green method to produce hydroxyl radical (•OH), is effective in degrading numerous organic contaminants in aqueous solution. Here, we proposed an effective and simple kinetic model to describe the degradation of organic pollutants in VUV system, by taking the •OH scavenging effects of formed organic intermediates as co-existing organic matter in whole. Using benzoic acid (BA) as a •OH probe, •OH was regarded vital for pollutant degradation in VUV system, and the thus developed model successfully predicted its degradation kinetics under different conditions. Effects of typical influencing factors such as BA concentrations and UV intensity were investigated quantitatively by the model. Temperature was found to be an important influencing factor in the VUV system, and the quantum yield of •OH showed a positive linear dependence on temperature. Impacts of humic acid (HA), alkalinity, chloride, and water matrices (realistic waters) on the oxidation efficiency were also examined. BA degradation was significantly inhibited by HA due to its scavenging of •OH, but was influenced much less by the alkalinity and chloride; high oxidation efficiency was still obtained in the realistic water. The degradation kinetics of three other typical micropollutants including bisphenol A (BPA), nitrobenzene (NB) and dimethyl phthalate (DMP), and the mixture of co-existing BA, BPA and DMP were further studied, and the developed model predicted the experimental data well, especially in realistic water. It is expected that this study will provide an effective approach to predict the degradation of organic micropollutants by the promising VUV system, and broaden the application of VUV system in water treatment.


Asunto(s)
Compuestos de Bencidrilo/química , Ácido Benzoico/química , Radical Hidroxilo/química , Nitrobencenos/química , Fenoles/química , Ácidos Ftálicos/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Cloro/química , Sustancias Húmicas , Cinética , Modelos Teóricos , Oxidación-Reducción , Rayos Ultravioleta , Vacio
10.
Water Res ; 69: 223-233, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25486622

RESUMEN

2-methylisoborneol (2-MIB) and geosmin are two odor-causing compounds that are difficult to remove and the cause of many consumer complaints. In this study, we assessed the degradation of 2-MIB and geosmin using a UV/persulfate process for the first time. The results showed that both 2-MIB and geosmin could be degraded effectively using this process. The process was modeled based on steady-state assumption with respect to the odor-causing compounds and either hydroxyl or sulfate radicals. The second order rate constants for 2-MIB and geosmin reacting with the sulfate radical (SO4(-)) were estimated to be (4.2 ± 0.6) × 10(8) M(-1)s(-1) and (7.6 ± 0.6) × 10(8) M(-1)s(-1) respectively at a pH of 7.0. The contributions of the hydroxyl radical (OH) to 2-MIB and geosmin degradation were 3.5 times and 2.0 times higher, respectively, than the contribution from SO4(-) in Milli-Q water with 2 mM phosphate buffer at pH 7.0. The pseudo-first-order rate constants (ko(s)) of both 2-MIB and geosmin increased with increasing dosages of persulfate. Although pH did not affect the degradation of 2-MIB and geosmin directly, different scavenging effects of hydrogen phosphate and dihydrogen phosphate resulted in higher values of ko(s) for both 2-MIB and geosmin in acidic condition. Bicarbonate and natural organic matter (NOM) inhibited the degradation of both 2-MIB and geosmin dramatically through consuming OH and SO4(-) and were likely to be the main radical scavengers in natural waters when using UV/persulfate process to control 2-MIB and geosmin.


Asunto(s)
Canfanos/aislamiento & purificación , Radical Hidroxilo/química , Naftoles/aislamiento & purificación , Compuestos de Potasio/química , Sulfatos/química , Rayos Ultravioleta , Álcalis/química , Concentración de Iones de Hidrógeno , Cinética , Metanol/química , Contaminantes Químicos del Agua/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA