Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982587

RESUMEN

Transactive response element DNA/RNA-binding protein 43 kDa (TDP-43) is the causative protein of amyotrophic lateral sclerosis (ALS); several ALS-associated mutants of TDP-43 have been identified. TDP-43 has several domains: an N-terminal domain, two RNA/DNA-recognition motifs, and a C-terminal intrinsically disordered region (IDR). Its structures have been partially determined, but the whole structure remains elusive. In this study, we investigate the possible end-to-end distance between the N- and C-termini of TDP-43, its alterations due to ALS-associated mutations in the IDR, and its apparent molecular shape in live cells using Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS). Furthermore, the interaction between ALS-associated TDP-43 and heteronuclear ribonucleoprotein A1 (hnRNP A1) is slightly stronger than that of wild-type TDP-43. Our findings provide insights into the structure of wild-type and ALS-associated mutants of TDP-43 in a cell.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Mutación , Conformación Molecular , ARN
2.
Genes Cells ; 22(6): 521-534, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28497562

RESUMEN

The mechanism and cause of motor neuronal cell death in amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disorder, are unknown; gain of function of oligomers and aggregation of misfolded proteins, including carboxyl-terminal fragments (CTFs) of TAR RNA/DNA-binding protein 43 kDa (TDP-43), have been proposed as important causative factors in the onset of ALS. We recently reported that a nuclear localization signal (NLS)-tagged 25-kDa CTF of TDP-43 (TDP25) could decrease the cell-death proportion compared with that promoted by TDP25. Here, we show oligomeric states of NLS-TDP25 and its detailed localization property using super-resolution fluorescence microscopy, FRET, fluorescence recovery after photobleaching, and fluorescence correlation spectroscopy analysis. NLS-TDP25 efficiently formed a nucleolar cap structure via RNA binding in the presence of actinomycin D, but TDP25 did not. Although cytoplasmic inclusion bodies including TDP25 had a disordered and immobile structure, NLS-TDP25 in the nucleolus was ordered and dynamic. In the diffuse state, TDP25 formed fewer oligomers and interacted with the molecular chaperone, HSP70; however, NLS-TDP25 formed oligomers. These results suggested that NLS-tagged TDP25 can change its structure to use ordered oligomeric but nontoxic state. Moreover, the structure of ordered oligomers as well as nuclear sequestration may be important in mediating cytotoxicity in ALS pathology.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Señales de Localización Nuclear/metabolismo , Fragmentos de Péptidos/metabolismo , Animales , Muerte Celular , Núcleo Celular/genética , Proteínas de Unión al ADN/química , Transferencia Resonante de Energía de Fluorescencia , Ratones
3.
Sci Rep ; 6: 19230, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26757674

RESUMEN

A hallmark of amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease, is formation of inclusion bodies (IBs) from misfolded proteins in neuronal cells. TAR RNA/DNA-binding protein 43 kDa (TDP43) is an ALS-causative protein forming IBs in ALS patients. The relation between localization of the IBs and neurotoxicity remains largely unknown. We characterized aggregation of fluorescently tagged TDP43 and its carboxyl-terminal fragments (CTFs) by analytical fluorescence imaging techniques. Quantitative time-lapse analysis in individual live cells showed that fluorescent-protein-tagged TDP43 was cleaved and a 35 kDa TDP43 CTF (TDP35) formed ubiquitin (Ub)-negative cytoplasmic IBs. Although TDP35 formed mildly toxic Ub-negative IBs in the cytoplasm, TDP25, another type of a TDP43 CTF, efficiently formed sufficiently toxic Ub-positive IBs. One- or two-color fluorescence correlation spectroscopy (FCS/FCCS) revealed that coaggregation of TDP25 with TDP43 was initiated by depletion of the RNA that binds to TDP25. Moreover, nuclear localization tagging TDP25 reduced the rate of neuronal cell death. These observations point to the need to elucidate the novel sequestration mechanism and details of the toxicity of the misfolded and aggregation-prone TDP43 CTFs (as well as the RNA binding and nuclear retention) in order to identify possible preventive interventions against ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Dominios y Motivos de Interacción de Proteínas , ARN/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Caspasa 3/metabolismo , Muerte Celular , Línea Celular , Proteínas de Unión al ADN/química , Humanos , Cuerpos de Inclusión/metabolismo , Ratones , Fragmentos de Péptidos/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas , Unión Proteica , Pliegue de Proteína , Transporte de Proteínas , Proteolisis , ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA