Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 39(48): 9645-9659, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31641049

RESUMEN

Sphingosine 1-phosphate (S1P) is a potent vasculoprotective and neuroprotective signaling lipid, synthesized primarily by sphingosine kinase 2 (SK2) in the brain. We have reported pronounced loss of S1P and SK2 activity early in Alzheimer's disease (AD) pathogenesis, and an inverse correlation between hippocampal S1P levels and age in females, leading us to speculate that loss of S1P is a sensitizing influence for AD. Paradoxically, SK2 was reported to mediate amyloid ß (Aß) formation from amyloid precursor protein (APP) in vitro To determine whether loss of S1P sensitizes to Aß-mediated neurodegeneration, we investigated whether SK2 deficiency worsens pathology and memory in male J20 (PDGFB-APPSwInd) mice. SK2 deficiency greatly reduced Aß content in J20 mice, associated with significant improvements in epileptiform activity and cross-frequency coupling measured by hippocampal electroencephalography. However, several key measures of APPSwInd-dependent neurodegeneration were enhanced on the SK2-null background, despite reduced Aß burden. These included hippocampal volume loss, oligodendrocyte attrition and myelin loss, and impaired performance in Y-maze and social novelty memory tests. Inhibition of the endosomal cholesterol exporter NPC1 greatly reduced sphingosine phosphorylation in glial cells, linking loss of SK2 activity and S1P in AD to perturbed endosomal lipid metabolism. Our findings establish SK2 as an important endogenous regulator of both APP processing to Aß, and oligodendrocyte survival, in vivo These results urge greater consideration of the roles played by oligodendrocyte dysfunction and altered membrane lipid metabolic flux as drivers of neurodegeneration in AD.SIGNIFICANCE STATEMENT Genetic, neuropathological, and functional studies implicate both Aß and altered lipid metabolism and/or signaling as key pathogenic drivers of Alzheimer's disease. In this study, we first demonstrate that the enzyme SK2, which generates the signaling lipid S1P, is required for Aß formation from APP in vivo Second, we establish a new role for SK2 in the protection of oligodendrocytes and myelin. Loss of SK2 sensitizes to Aß-mediated neurodegeneration by attenuating oligodendrocyte survival and promoting hippocampal atrophy, despite reduced Aß burden. Our findings support a model in which Aß-independent sensitizing influences such as loss of neuroprotective S1P are more important drivers of neurodegeneration than gross Aß concentration or plaque density.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Placa Amiloide/metabolismo , Enfermedad de Alzheimer/patología , Animales , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/prevención & control , Femenino , Hipocampo/patología , Masculino , Ratones , Ratones Transgénicos , Neuroprotección/fisiología , Técnicas de Cultivo de Órganos , Tamaño de los Órganos/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Placa Amiloide/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA