Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Bioinformatics ; 32(21): 3270-3278, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27378298

RESUMEN

Participating as the Cornell-Gdansk group, we have used our physics-based coarse-grained UNited RESidue (UNRES) force field to predict protein structure in the 11th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP11). Our methodology involved extensive multiplexed replica exchange simulations of the target proteins with a recently improved UNRES force field to provide better reproductions of the local structures of polypeptide chains. All simulations were started from fully extended polypeptide chains, and no external information was included in the simulation process except for weak restraints on secondary structure to enable us to finish each prediction within the allowed 3-week time window. Because of simplified UNRES representation of polypeptide chains, use of enhanced sampling methods, code optimization and parallelization and sufficient computational resources, we were able to treat, for the first time, all 55 human prediction targets with sizes from 44 to 595 amino acid residues, the average size being 251 residues. Complete structures of six single-domain proteins were predicted accurately, with the highest accuracy being attained for the T0769, for which the CαRMSD was 3.8 Å for 97 residues of the experimental structure. Correct structures were also predicted for 13 domains of multi-domain proteins with accuracy comparable to that of the best template-based modeling methods. With further improvements of the UNRES force field that are now underway, our physics-based coarse-grained approach to protein-structure prediction will eventually reach global prediction capacity and, consequently, reliability in simulating protein structure and dynamics that are important in biochemical processes. AVAILABILITY AND IMPLEMENTATION: Freely available on the web at http://www.unres.pl/ CONTACT: has5@cornell.edu.


Asunto(s)
Modelos Moleculares , Proteínas/química , Animales , Humanos , Conformación Proteica , Estructura Secundaria de Proteína , Reproducibilidad de los Resultados
2.
J Chem Inf Model ; 56(11): 2263-2279, 2016 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-27749055

RESUMEN

Recently, we developed a new approach to protein-structure prediction, which combines template-based modeling with the physics-based coarse-grained UNited RESidue (UNRES) force field. In this approach, restrained multiplexed replica exchange molecular dynamics simulations with UNRES, with the Cα-distance and virtual-bond-dihedral-angle restraints derived from knowledge-based models are carried out. In this work, we report a test of this approach in the 11th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP11), in which we used the template-based models from early-stage predictions by the LEE group CASP11 server (group 038, called "nns"), and further improvement of the method. The quality of the models obtained in CASP11 was better than that resulting from unrestrained UNRES simulations; however, the obtained models were generally worse than the final nns models. Calculations with the final nns models, performed after CASP11, resulted in substantial improvement, especially for multi-domain proteins. Based on these results, we modified the procedure by deriving restraints from models from multiple servers, in this study the four top-performing servers in CASP11 (nns, BAKER-ROSETTASERVER, Zhang-server, and QUARK), and implementing either all restraints or only the restraints on the fragments that appear similar in the majority of models (the consensus fragments), outlier models discarded. Tests with 29 CASP11 human-prediction targets with length less than 400 amino-acid residues demonstrated that the consensus-fragment approach gave better results, i.e., lower α-carbon root-mean-square deviation from the experimental structures, higher template modeling score, and global distance test total score values than the best of the parent server models. Apart from global improvement (repacking and improving the orientation of domains and other substructures), improvement was also reached for template-based modeling targets, indicating that the approach has refinement capacity. Therefore, the consensus-fragment analysis is able to remove lower-quality models and poor-quality parts of the models without knowing the experimental structure.


Asunto(s)
Caspasas/química , Secuencia de Consenso , Simulación de Dinámica Molecular , Fragmentos de Péptidos/química , Humanos , Conformación Proteica
3.
J Chem Inf Model ; 55(9): 2050-70, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26263302

RESUMEN

A new approach to the calibration of the force fields is proposed, in which the force-field parameters are obtained by maximum-likelihood fitting of the calculated conformational ensembles to the experimental ensembles of training system(s). The maximum-likelihood function is composed of logarithms of the Boltzmann probabilities of the experimental conformations, calculated with the current energy function. Because the theoretical distribution is given in the form of the simulated conformations only, the contributions from all of the simulated conformations, with Gaussian weights in the distances from a given experimental conformation, are added to give the contribution to the target function from this conformation. In contrast to earlier methods for force-field calibration, the approach does not suffer from the arbitrariness of dividing the decoy set into native-like and non-native structures; however, if such a division is made instead of using Gaussian weights, application of the maximum-likelihood method results in the well-known energy-gap maximization. The computational procedure consists of cycles of decoy generation and maximum-likelihood-function optimization, which are iterated until convergence is reached. The method was tested with Gaussian distributions and then applied to the physics-based coarse-grained UNRES force field for proteins. The NMR structures of the tryptophan cage, a small α-helical protein, determined at three temperatures (T = 280, 305, and 313 K) by Halabis et al. ( J. Phys. Chem. B 2012 , 116 , 6898 - 6907 ), were used. Multiplexed replica-exchange molecular dynamics was used to generate the decoys. The iterative procedure exhibited steady convergence. Three variants of optimization were tried: optimization of the energy-term weights alone and use of the experimental ensemble of the folded protein only at T = 280 K (run 1); optimization of the energy-term weights and use of experimental ensembles at all three temperatures (run 2); and optimization of the energy-term weights and the coefficients of the torsional and multibody energy terms and use of experimental ensembles at all three temperatures (run 3). The force fields were subsequently tested with a set of 14 α-helical and two α + ß proteins. Optimization run 1 resulted in better agreement with the experimental ensemble at T = 280 K compared with optimization run 2 and in comparable performance on the test set but poorer agreement of the calculated folding temperature with the experimental folding temperature. Optimization run 3 resulted in the best fit of the calculated ensembles to the experimental ones for the tryptophan cage but in much poorer performance on the training set, suggesting that use of a small α-helical protein for extensive force-field calibration resulted in overfitting of the data for this protein at the expense of transferability. The optimized force field resulting from run 2 was found to fold 13 of the 14 tested α-helical proteins and one small α + ß protein with the correct topologies; the average structures of 10 of them were predicted with accuracies of about 5 Å C(α) root-mean-square deviation or better. Test simulations with an additional set of 12 α-helical proteins demonstrated that this force field performed better on α-helical proteins than the previous parametrizations of UNRES. The proposed approach is applicable to any problem of maximum-likelihood parameter estimation when the contributions to the maximum-likelihood function cannot be evaluated at the experimental points and the dimension of the configurational space is too high to construct histograms of the experimental distributions.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos/química , Calibración , Funciones de Verosimilitud , Modelos Biológicos
4.
J Fluoresc ; 24(3): 713-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24337873

RESUMEN

The fluorescence quenching of different coumarin derivatives (7-hydroxy-4-methylcoumarin, 5,7-dimethoxycoumarin, 7-amino-4-methyl-3-coumarinylacetic acid, 7-ethoxy-4-methylcoumarin, 7-methoxycoumarin, 7-hydroxycoumarin, 7-hydroxy-4-methyl-3-coumarinylacetic acid and 7-amino-4-methylcoumarin) by 4-hydroxy-TEMPO in aqueous solutions at the room temperature was studied with the use of UV-Vis absorption spectroscopy as well as a steady-state and time-resolved fluorescence spectroscopy. In order to understand the mechanism of quenching the absorption and fluorescence emission spectra of all coumarins along with fluorescence decays were recorded under the action of 4-hydroxy-TEMPO. The Stern-Volmer plots (both from time-averaged and time-resolved measurements) displayed no positive (upward) deviation from a linearity. The fluorescence quenching mechanism was found to be entirely dynamic, what was additionally confirmed by the registration of Stern-Volmer plots at different temperatures. The Stern-Volmer quenching constants and bimolecular quenching rate constants were obtained for all coumarins studied at the room temperature. The findings demonstrate the possibility of developing an analytical method for the quantitative determination of the free radicals' scavenger, 4-hydroxy-TEMPO.


Asunto(s)
Cumarinas/análisis , Cumarinas/química , Óxidos N-Cíclicos/química , Fluorescencia , Depuradores de Radicales Libres/química , Hidroxilamina/química , Agua/química , Modelos Moleculares , Estructura Molecular , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
5.
J Mol Graph Model ; 83: 92-99, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29860162

RESUMEN

Knowledge-based methods are, at present, the most effective ones for the prediction of protein structures; however, their results heavily depend on the similarity of a target sequence to those of proteins with known structures. On the other hand, the physics-based methods, although still less accurate and more expensive to execute, are independent of databases and give reasonable results where the knowledge-based methods fail because of weak sequence similarity. Therefore, a plausible approach seems to be the use of knowledge-based methods to determine the sections of the structures that correspond to sufficient sequence similarity and physics-based methods to determine the remaining structure. By participating in the 12th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP12) as the KIAS-Gdansk group, we tested our recently developed hybrid approach, in which protein-structure prediction is carried out by using the physics-based UNRES coarse-grained energy function, with restraints derived from the server models. Best predictions among all groups were obtained for 2 targets and 80% of our models were in the upper 50% of the models submitted to CASP. Our method was also able to exclude, with about 70% confidence, the information from the servers that performed poorly on a given target. Moreover, the method resulted in the best models of 2 refinement targets and performed remarkably well on oligomeric targets.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Proteínas , Modelos Moleculares , Conformación Proteica , Proteínas/química , Algoritmos , Bases de Datos Factuales , Simulación de Dinámica Molecular , Pliegue de Proteína , Relación Estructura-Actividad Cuantitativa
6.
Free Radic Res ; 51(1): 38-46, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27866421

RESUMEN

1,3-Diphenylisobenzofuran (DPBF) has been developed as a selective probe for the detection and quantitative determination of hydrogen peroxide in samples containing different reactive nitrogen and oxygen species (RNOS). DPBF is a fluorescent probe which, for almost 20 years, was believed to react in a highly specific manner toward some reactive oxygen species (ROS) such as singlet oxygen and hydroxy, alkyloxy or alkylperoxy radicals. Under the action of these individuals DPBF has been rapidly transformed to 1,2-dibenzoylbenzene (DBB). In order to check if DPBF can act as a unique indicator of the total amount of different RNOS, as well as oxidative stress caused by an overproduction of these individuals, a series of experiments was carried out, in which DPBF reacted with peroxynitrite anion, superoxide anion, hydrogen peroxide, hypochlorite anion, and anions commonly present under biological conditions, namely nitrite and nitrate. In all cases, except for hydrogen peroxide, the product of the reaction is DBB. Only under the action of H2O2 9-hydroxyanthracen-10(9H)-one (oxanthrone) is formed. This product has been identified with the use of fluorescence spectroscopy, NMR spectroscopy, high performance liquid chromatography coupled with mass spectrometry, infrared spectroscopy, elemental analysis, and cyclic voltammetry (CV). A linear relationship was found between a decrease in the fluorescence intensity of DPBF and the concentration of hydrogen peroxide in the range of concentrations of 0.196-3.941 mM. DPBF responds to hydrogen peroxide in a very specific way with the limits of detection and quantitation of 88 and 122.8 µM, respectively. The kinetics of the reaction between DBBF and H2O2 was also studied.


Asunto(s)
Benzofuranos/química , Colorantes Fluorescentes/química , Peróxido de Hidrógeno/análisis , Cromatografía Líquida de Alta Presión , Peróxido de Hidrógeno/química , Límite de Detección , Especies de Nitrógeno Reactivo/química
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt C: 1875-80, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25467682

RESUMEN

The fluorescence quenching of 7-amino-4-methylcoumarin by different TEMPO derivatives was studied in aqueous solutions with the use of steady-state, time-resolved fluorescence spectroscopy as well as UV-VIS absorption spectroscopy methods. In order to distinguish each TEMPO derivative from the others and to understand the mechanism of quenching, the absorption and fluorescence emission spectra as well as decays of the fluorescence of 7-amino-4-methylcoumarin were registered as a function of each TEMPO derivative concentration. There were no deviations from a linearity in the Stern-Volmer plots (determined from both, steady-state and time-resolved measurements). The fluorescence quenching mechanism was found to be entirely collisional, what was additionally confirmed by the registration of Stern-Volmer plots at 5 temperatures ranging from 15 to 55°C. Based on theoretical calculations of molecular radii and ionization potentials of all TEMPO derivatives the mechanism of electron transfer was rejected. The fluorescence quenching which was being studied seems to be diffusion-limited and caused by the increase of non-radiative processes, such as an internal conversion and an intersystem crossing. The Stern-Volmer quenching constants and bimolecular quenching constants were determined at the room temperature for all TEMPO derivatives studied. Among all TEMPO derivatives studied TEMPO-4-amino-4-carboxylic acid (TOAC) was found to be the most effective quencher of 7-amino-4-methylcoumarin fluorescence (kq for TOAC was approximately 1.5 higher than kq for other TEMPO compounds studied). The findings demonstrate the possibility of developing an analytical method for the quantitative determination of TOAC, which incorporation into membrane proteins may provide a direct detection of peptide backbone dynamics.


Asunto(s)
Cumarinas/química , Óxidos N-Cíclicos/química , Óxidos N-Cíclicos/farmacología , Fluorescencia , Cinética , Espectrometría de Fluorescencia
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 133: 887-91, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25027659

RESUMEN

The fluorescence quenching of norfloxacin, danofloxacin, enrofloxacin and levofloxacin, belonging to a group of fluoroquinolone antibiotics, by 4-hydroxy-TEMPO was studied in aqueous solutions with the use of steady-state, time-resolved fluorescence spectroscopy as well as UV-VIS absorption spectroscopy methods. In order to understand the mechanism of quenching the absorption and fluorescence emission spectra of all fluoroquinolone antibiotics studied as well as decreases of their fluorescence were registered as a function of the 4-hydroxy-TEMPO concentration. No deviations from a linearity in the Stern-Volmer plots (determined from both, steady-state and time-resolved measurements) were observed. The fluorescence quenching mechanism was proved to be totally dynamic, what was additionally confirmed by the registration of Stern-Volmer plots at 5 temperatures ranging from 15 to 55°C. On the basis of theoretical calculations of fluoroquinolones' molecular radii and ionization potentials the mechanism of electron transfer was rejected. It seems that the fluorescence quenching is diffusion-limited and is caused by the increase of nonradiative processes, such as internal conversion or intersystem crossing. The Stern-Volmer quenching constants and bimolecular quenching constants were determined at the room temperature for all fluoroquinolone antibiotics studied.


Asunto(s)
Antibacterianos/química , Óxidos N-Cíclicos/química , Fluoroquinolonas/química , Hidroxilamina/química , Fluorescencia , Modelos Moleculares , Espectrometría de Fluorescencia
9.
J Mol Model ; 20(8): 2306, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25024008

RESUMEN

A unified coarse-grained model of three major classes of biological molecules--proteins, nucleic acids, and polysaccharides--has been developed. It is based on the observations that the repeated units of biopolymers (peptide groups, nucleic acid bases, sugar rings) are highly polar and their charge distributions can be represented crudely as point multipoles. The model is an extension of the united residue (UNRES) coarse-grained model of proteins developed previously in our laboratory. The respective force fields are defined as the potentials of mean force of biomacromolecules immersed in water, where all degrees of freedom not considered in the model have been averaged out. Reducing the representation to one center per polar interaction site leads to the representation of average site-site interactions as mean-field dipole-dipole interactions. Further expansion of the potentials of mean force of biopolymer chains into Kubo's cluster-cumulant series leads to the appearance of mean-field dipole-dipole interactions, averaged in the context of local interactions within a biopolymer unit. These mean-field interactions account for the formation of regular structures encountered in biomacromolecules, e.g., α-helices and ß-sheets in proteins, double helices in nucleic acids, and helicoidally packed structures in polysaccharides, which enables us to use a greatly reduced number of interacting sites without sacrificing the ability to reproduce the correct architecture. This reduction results in an extension of the simulation timescale by more than four orders of magnitude compared to the all-atom representation. Examples of the performance of the model are presented.


Asunto(s)
Sustancias Macromoleculares/química , Simulación de Dinámica Molecular , Ácidos Nucleicos/química , Péptidos/química , Polisacáridos/química , Unión Proteica , Estructura Secundaria de Proteína , Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA