Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Small ; 20(6): e2305258, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37797179

RESUMEN

Zeolitic imidazolate frameworks (ZIFs) are a subclass of metal-organic framework that have attracted considerable attention as potential functional materials due to their high chemical stability and ease of synthesis. ZIFs are usually composed of zinc ions coordinated with imidazole linkers, with some other transition metals, such as Cu(II) and Co(II), also showing potential as ZIF-forming cations. Despite the importance of nickel in catalysis, no Ni-based ZIF with permanent porosity is yet reported. It is found that the presence and arrangement of the carbonyl functional groups on the imidazole linker play a crucial role in completing the preferred octahedral coordination of nickel, revealing a promising platform for the rational design of Ni-based ZIFs for a wide range of catalytic applications. Herein, the synthesis of the first Ni-based ZIFs is reported and their high potential as heterogeneous catalysts for Suzuki-Miyaura cross-coupling C─C bond forming reactions is demonstrated.

2.
Molecules ; 28(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37894537

RESUMEN

The fast adsorption kinetics of zeolitic imidazolate frameworks (ZIFs) enable a wide range of sorption applications. The most commonly used framework, ZIF-8, is relatively non-polar. Increasing the polarity of ZIF-8 through the encapsulation of different polar species shows promise for enhancing the sorption performance for pure CO2. Recently, the outlook has re-focused on gas mixtures, mostly in the context of post-combustion CO2 capture from wet flue gasses. While water is known to sometimes have a synergistic effect on CO2 sorption, we still face the potential problem of preferential water vapor adsorption. Herein, we report the preparation of three ZIF-8/organic dye (OD) composites using Congo red, Xylenol orange, and Bromothymol blue, and their impact on the sorption properties for CO2, water, and a model wet CO2 system at 50% RH. The results show that the preparation of OD composites can be a promising way to optimize adsorbents for single gasses, but further work is needed to find superior ZIF@OD for the selective sorption of CO2 from wet gas mixtures.

3.
Molecules ; 28(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36615446

RESUMEN

One of the biggest advantages of MOFs is the possibility of modifying their properties and tuning their inherent activity (i.e., sorption, storage, catalytic activity etc.). Textural properties can be tuned by manipulating process and compositional parameters, among which, the effect of additives can be even further distinguished among them based on the way they affect these properties. Beyond the effect that additives have on the size and morphology of nanoMOFs, there is also an effect on properties via creating point defects-missing linker and missing node defects. In this study, we investigated the effect of four monotopic acid modulators-formic, acetic, dichloroacetic and propionic acid, their concentration and the heating type (conventional and microwave-MW) on the size, morphology and textural properties of a recently discovered bioNICS1. It was confirmed that the proposed seesaw model for the controlled size of nanoMOF crystals is less applicable in the case of MW-assisted synthesis, in comparison to conventional heating. In the case of formic acid- and propionic acid-modified materials, we demonstrated that the type of additive plays a different role in crystal growth and generation of defects, implying high tunability being crucial for a material's structure-property performance optimization.


Asunto(s)
Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Propionatos , Zinc
4.
Molecules ; 26(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809312

RESUMEN

The use of green solvents as an alternative to dimethylformamide (DMF) in the synthesis of zeolitic imidazolate framework-90 (ZIF-90) was investigated. Two biobased aprotic dipolar solvents CyreneTM and γ-valerolactone (GVL) proved to successfully replace DMF in the synthesis at room temperature with a high product yield. While the CyreneTM-based product shows reduced porosity after activation, the use of GVL resulted in materials with preserved crystallinity and porosity after activation, without prior solvent exchange and a short treatment at 200 °C. The primary particles of 30 nm to 60 nm in all products further form agglomerates of different size and interparticle mesoporosity, depending on the type and molar ratios of solvents used.

5.
Acta Chim Slov ; 63(3): 440-58, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27640372

RESUMEN

The research on metal-organic frameworks (MOFs) experienced rapid progress in recent years due to their structure diversity and wide range of application opportunities. Continuous progress of X-ray and neutron diffraction methods enables more and more detailed insight into MOF's structural features and significantly contributes to the understanding of their chemistry. Improved instrumentation and data processing in high-resolution X-ray diffraction methods enables the determination of new complex MOF crystal structures in powdered form. By the use of neutron diffraction techniques, a lot of knowledge about the interaction of guest molecules with crystalline framework has been gained in the past few years. Moreover, in-situ time-resolved studies by various diffraction and scattering techniques provided comprehensive information about crystallization kinetics, crystal growth mechanism and structural dynamics triggered by external physical or chemical stimuli. The review emphasizes most relevant advanced structural studies of MOFs based on powder X-ray and neutron scattering.

6.
Angew Chem Int Ed Engl ; 54(36): 10535-8, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26178577

RESUMEN

The spatial distribution of different linkers within mixed-linker metal-organic frameworks crucially influences the properties of such materials. A simple and robust approach based on (1)H spin-diffusion magic-angle-spinning nuclear magnetic resonance measurements and modeling of spin-diffusion curves is presented; this approach facilitates the distinction between homogeneous and clustered distributions. The performance of the approach is demonstrated with an example of an aluminum-based metal-organic material DUT-5, which has framework consisting of biphenyl and bipyridyl dicarboxylic linkers. The distribution is shown to be homogeneous in this material. The approach could be applied to studying other spatially disordered crystalline materials.

7.
Acta Chim Slov ; 61(3): 432-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25286197

RESUMEN

New magnesium 4,4'-biphenyldicarboxylate (BPDC) was solvothermally synthesized in the presence of N,N'-dimethylformamide (DMF). The crystal structure with formula Mg(3)(BPDC)(3)(DMF)(4) and denoted as NICS-7 was solved in monoclinic symmetry with space group Pn (no. 7) and unit cell parameters a = 12.6433(7) Å, b = 13.3950(5) Å, c = 19.9230(8) A, beta = 107.131(5) °. The structure consists of MgO(6) linear arranged trimers with common vertices connected through BPDC ligands forming extended 2-dimensional layered hybrid structure. Each terminal Mg atom within trimeric clusters is coordinated by two dimethylformamide molecules, respectively. Layers of Mg(3)(BPDC)(3)(DMF)(4) are stabilized by non-coordinated dimethylformamide molecules located within the voids in crystallographically disordered manner. Thermal properties of NICS-7 were determined by thermogravimetric and temperature-programmed X-ray diffraction. The structure remains stable only up to 50 °C. At higher temperatures, the removal of non-coordinated dimethylformamide molecules causes formation of amorphous Mg-BPDC phase.

8.
Nanomaterials (Basel) ; 13(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37686895

RESUMEN

Linde type A (LTA) aluminophosphate is a promising candidate for an energy storage material used for low-temperature solar and waste-heat management. The mechanism of reversible water adsorption, which is the basis for potential industrial applications, is still not clear. In this paper, we provide mechanistic insight into various aspects of the hydration process using molecular modeling methods. Building on accurate DFT calculations and available experimental data, we first refine the existing empirical force-field used in subsequent classical molecular dynamics simulations that captures the relevant physics of the water binding process. We succeed in fully reproducing the experimentally determined X-ray structure factors and use them to estimate the number of water molecules present in the fully hydrated state of the material. Furthermore, we show that the translational and orientational mobility of the confined water is significantly reduced and resembles the dynamics of glassy systems.

9.
ACS Appl Mater Interfaces ; 15(14): 18354-18361, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36996820

RESUMEN

Currently, metal-organic framework (MOF)-polymer composites are attracting great interest as a step forward in making MOFs a useful material for industrially relevant applications. However, most of the research is engaged with finding promising MOF/polymer pairs and less with the synthetic methods by which these materials are then combined, albeit hybridization has a significant impact on the properties of the new composite macrostructure. Thus, the focus of this work is on the innovative hybridization of MOFs and polymerized high internal phase emulsions (polyHIPEs), two classes of materials that exhibit porosity at different length scales. The main thrust is the in situ secondary recrystallization, i.e., growth of MOFs from metal oxides previously fixed in polyHIPEs by the Pickering HIPE-templating, and further structure-function study of composites through the CO2 capture behavior. The combination of Pickering HIPE polymerization and secondary recrystallization at the metal oxide-polymer interface proved advantageous, as MOF-74 isostructures based on different metal cations (M2+ = Mg, Co, or Zn) could be successfully shaped in the polyHIPEs' macropores without affecting the properties of the individual components. The successful hybridization resulted in highly porous, co-continuous MOF-74-polyHIPE composite monoliths forming an architectural hierarchy with pronounced macro-microporosity, in which the MOF microporosity is almost completely accessible for gases, i.e., about 87% of the micropores, and the monoliths exhibit excellent mechanical stability. The well-structured porous architecture of the composites showed superior CO2 capture performance compared to the parent MOF-74 powders. Both adsorption and desorption kinetics are significantly faster for composites. Regeneration by temperature swing adsorption recovers about 88% of the total adsorption capacity of the composite, while it is lower for the parent MOF-74 powders (about 75%). Finally, the composites exhibit about 30% improvement in CO2 uptake under working conditions compared to the parent MOF-74 powders, and some of the composites are able to retain 99% of the original adsorption capacity after five adsorption/desorption cycles.

10.
ACS Appl Mater Interfaces ; 15(23): 28747-28762, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37264972

RESUMEN

A γ-alumina support functionalized with transition metals is one of the most widely used industrial catalysts for the total oxidation of volatile organic compounds (VOCs) as air pollutants at higher temperatures (280-450 °C). By rational design of a bimetal CuFe-γ-alumina catalyst, synthesized from a dawsonite alumina precursor, the activity in total oxidation of toluene as a model VOC at a lower temperature (200-380 °C) is achieved. A fundamental understanding of the catalyst and the reaction mechanism is elucidated by advanced microscopic and spectroscopic characterizations as well as by temperature-programmed surface techniques. The nature of the metal-support bonding and the optimal abundance between Cu-O-Al and Fe-O-Al species in the catalysts leads to synergistic catalytic activity promoted by small amounts of iron (Fe/Al = 0.005). The change in the metal oxide-cluster alumina interface is related to the nature of the surfaces to which the Cu atoms attach. In the most active catalyst, the CuO6 octahedra are attached to 4 Al atoms, while in the less active catalyst, they are attached to only 3 Al atoms. The oxidation of toluene occurs via the Langmuir-Hinshelwood mechanism. The presented material introduces a prospective family of low-cost and scalable oxidation catalysts with superior efficiency at lower temperatures.

11.
Angew Chem Int Ed Engl ; 51(50): 12490-4, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23150235

RESUMEN

Crystal engineering: The synthesis of the known compounds MIL-100(Fe) and MIL-45(Fe) is characterized by spectroscopy. The products are obtained under identical conditions by varying the solvent from pure water to a mixture of water and acetone. The starting solution, the gel, and the final reaction product were characterized by X-ray absorption spectroscopy (see picture).

12.
Nanomaterials (Basel) ; 12(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35458059

RESUMEN

The present work deals with the study of water adsorption on acid-modified zeolites A. Commercial zeolites 4A (Na form) and 5A (Ca form) were subjected to EDTA dealumination, and their structure, textural properties and stability were checked by XRD, EDX, NMR and N2 physisorption analyses. The water adsorption isotherms of the parent zeolites and their modified forms were measured at a temperature of 25 °C and up to a relative pressure of 0.9. The results show that the treatment with EDTA drastically changes the structural properties of the zeolites and increases the water adsorption capacity by up to 10%. The changes depend on the type of extra-framework cations (Na+ and Ca2+) and the EDTA concentration.

13.
Nanoscale Adv ; 4(10): 2321-2331, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-36133702

RESUMEN

Catalyst design is crucial for improving catalytic activity and product selectivity. In a bifunctional Ni/ZSM-5 zeolite type catalyst, catalytic properties are usually tuned via varying Al and Ni contents. While changes in acid properties associated with Al sites are usually closely investigated, Ni phases, however, receive inadequate attention. Herein, we present a systematic structural study of Ni in the Ni/ZSM-5 materials by using Ni K-edge XANES and EXAFS analyses, complemented by XRD and TEM, to resolve the changes in the local environment of Ni species induced by the different Al contents of the parent ZSM-5 prepared by a "green", template free technique. Ni species in Ni/ZSM-5 exist as NiO crystals (3-50 nm) and as charge compensating Ni2+ cations. The Ni K-edge XANES and EXAFS results enabled the quantification of Ni-containing species. At a low Al to Si ratio (n Al/n Si ≤ 0.04), the NiO nanoparticles predominate in the samples and account for over 65% of Ni phases. However, NiO is outnumbered by Ni2+ cations attached to the zeolite framework in ZSM-5 with a high Al to Si ratio (n Al/n Si = 0.05) due to a higher number of framework negative charges imparted by Al. The obtained results show that the number of highly reducible and active NiO crystals is strongly correlated with the framework Al sites present in ZSM-5 zeolites, which depend greatly on the synthesis conditions. Therefore, this kind of study is beneficial for any further investigation of the catalytic activities of Ni/ZSM-5 and other metal-modified bifunctional catalysts.

14.
Commun Chem ; 5(1): 24, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36697798

RESUMEN

Bioapplication is an emerging field of metal-organic frameworks (MOF) utilization, but biocompatible MOFs with permanent porosity are still a rarity in the field. In addition, biocompatibility of MOF constituents is often overlooked when designing bioMOF systems, intended for drug delivery. Herein, we present the a Zn(II) bioMOF based on vitamin C as an independent ligand (bioNICS-1) forming a three-dimensional chiral framework with permanent microporosity. Comprehensive study of structure stability in biorelavant media in static and dynamic conditions demonstrates relatively high structure resistivity, retaining a high degree of its parent specific surface area. Robustness of the 3D framework enables a slow degradation process, resulting in controllable release of bioactive components, as confirmed by kinetic studies. BioNICS-1 can thus be considered as a suitable candidate for the design of a small drug molecule delivery system, which was demonstrated by successful loading and release of urea-a model drug for topical application-within and from the MOF pores.

15.
Nanomaterials (Basel) ; 12(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35745436

RESUMEN

Three porous aluminium benzene-1,3,5-tricarboxylates MIL-96(Al), MIL-100(Al) and MIL-110(Al) materials were studied for their hydrothermal stability. The 40-cycles water vapour sorption experiments for the three samples were performed by varying the temperature between 40 and 140 °C at 75% relative humidity to simulate working conditions for materials used in water sorption-based low-T heat storage and reallocation applications. The materials were characterized by powder X-ray diffraction, N2 physisorption, and Nuclear Magnetic Resonance and Infrared spectroscopies before and after the cycling tests. The results showed that the structure of MIL-110(Al) lost its crystallinity and porosity under the tested conditions, while MIL-96(Al) and MIL-100(Al) exhibited excellent hydrothermal stability. The selection of structures, which comprise the same type of metal and ligand, enabled us to attribute the differences in stability primarily to the known variances in secondary building units and the shielding of potential water coordination sites due to the differences in pore accessibility for water molecules. Additionally, our results revealed that water adsorption and desorption at tested conditions (T, RH) is very slow for all three materials, being most pronounced for the MIL-100(Al) structure.

16.
Nanomaterials (Basel) ; 10(12)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287283

RESUMEN

We present here important new findings on the direct synthesis of bimetal Cu-Mn containing porous silica catalyst and the effects of structure-directing agent removal from the prepared nanomaterial on the evolution of surface catalytic sites. The extraction-calcination procedure of the structure-directing agent removal led to the formation of Cu and Mn oxo-clusters and Cu and Mn oxide nanoparticles smaller than 5 nm, while the solely calcination procedure led to the mentioned species and in addition to the appearance of CuO nanoparticles 20 nm in size. Catalysts were tested in the Fenton-like catalytic degradation of dyes with different molecular charge (cationic, anionic, and zwitterionic) as model organic pollutants in wastewater at neutral pH. Significantly faster degradation of cationic and anionic dyes in the first 60 min was observed with the catalyst containing larger CuO nanoparticles (>20 nm) due to the less hindered generation of •OH radicals and slower obstructing of the active sites on the catalysts surface by intermediates. However, this was not found beneficial for zwitterionic dye with no adsorption on the catalysts surface, where the catalyst with smaller Cu species performed better.

17.
Nanomaterials (Basel) ; 9(1)2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30587775

RESUMEN

Sorption heat storage, as one of low-energy consuming technologies, is an approach to reduce CO2 emissions. The efficiency of such technology is governed by the performance of the applied sorbents. Thus, sorbents with high water sorption capacity and regeneration temperature from 80 to 150 °C are required. Incorporation of hygroscopic salt such as calcium chloride into porous materials is a logical strategy for increasing the water sorption capacity. This work reports the study on the development of composites with PHTS (plugged hexagonal templated silicate) matrix with an average pore size of 5.7 nm and different amounts of calcium chloride (4, 10, 20 wt.%) for solar thermal energy storage. These composites were prepared by wetness incipient impregnation method. Structural properties were determined by X-ray diffraction (XRD), nitrogen physisorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). CaCl2 was confined in micro- and mesopores of the matrix. The resulting CaCl2-PHTS materials were used for water sorption at 40 °C, showing an increase of maximal water uptake with higher amount of calcium chloride from 0.78 g/g to 2.44 g/g of the dry composite. A small reduction in water uptake was observed after 20 cycles of sorption/desorption between temperatures of 140 °C and 40 °C, indicating good cycling stability of these composites under the working conditions.

18.
Artículo en Inglés | MEDLINE | ID: mdl-24056358

RESUMEN

The new compound [Fe(H2cit)(H2O)]n (NICS-2) is the first neutral ferrous citrate carboxylate that has been synthesized up to now. The iron citrate coordination polymer was hydrothermally synthesized and the structure was solved using single-crystal X-ray diffraction. It crystallizes in an orthorhombic space group P2(1)2(1)2(1) (No. 19), with a = 5.9470 (4), b = 10.402(1) (5), c = 13.5773 (7) Å, V = 839.91 (8) Å(3), Z = 4. Its structure consists of one-dimensional chains of corner-sharing Fe(II)O6 octahedra that are additionally cross-linked with citrate ligands. Chains are additionally stabilized into a pseudo-three-dimensional structure by hydrogen bonds. The measurement of magnetic properties revealed that the magnetic moment is almost constant above 100 K (µeff = 5.1 µB), but decreases rapidly below this temperature most probably due to the appearance of weak antiferromagnetic interactions between Fe atoms. Additionally, analysis of Mossbauer spectra confirmed the presence of divalent Fe atoms in the structure. Thermogravimetrical and X-ray high-temperature diffraction analyses showed the thermal stability of the material up to 548 K.

19.
J Hazard Mater ; 172(2-3): 1450-7, 2009 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-19720456

RESUMEN

The natural zeolite tuff from the Vranjska Banja deposit (Serbia) has been studied as sorbent for Mn(II) ions from aqueous solutions. The zeolite sample containing mainly clinoptilolite (more than 70%) removes Mn(II) ions by ion-exchange process, which was confirmed by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray analysis (EDXS). XPS showed that there is no surface accumulation of Mn but an almost uniform distribution inside the sorbent; EDXS confirmed that Mn(II) replaced the clinoptilolite Na counter ions. The sorption isotherms were studied at 298 K by batch experiments showing that the Mn(II) removal is best described by the Langmuir-Freundlich or Sips model. The kinetics followed the pseudo-second-order model, the activation energy being 128 kJ mol(-1). The intra-particle diffusion is not the rate-controlling step in the sorption of Mn(II) on clinoptilolite. Thermodynamic data suggest spontaneity of the endothermic ion-exchange process in the 298-338 K range.


Asunto(s)
Manganeso/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Zeolitas/química , Adsorción , Intercambio Iónico , Cinética , Serbia , Termodinámica , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA