Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Pathog ; 18(2): e1009202, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35130321

RESUMEN

Zinc-finger antiviral protein (ZAP), also known as poly(ADP-ribose) polymerase 13 (PARP13), is an antiviral factor that selectively targets viral RNA for degradation. ZAP is active against both DNA and RNA viruses, including important human pathogens such as hepatitis B virus and type 1 human immunodeficiency virus (HIV-1). ZAP selectively binds CpG dinucleotides through its N-terminal RNA-binding domain, which consists of four zinc fingers. ZAP also contains a central region that consists of a fifth zinc finger and two WWE domains. Through structural and biochemical studies, we found that the fifth zinc finger and tandem WWEs of ZAP combine into a single integrated domain that binds to poly(ADP-ribose) (PAR), a cellular polynucleotide. PAR binding is mediated by the second WWE module of ZAP and likely involves specific recognition of an adenosine diphosphate-containing unit of PAR. Mutation of the PAR binding site in ZAP abrogates the interaction in vitro and diminishes ZAP activity against a CpG-rich HIV-1 reporter virus and murine leukemia virus. In cells, PAR facilitates formation of non-membranous sub-cellular compartments such as DNA repair foci, spindle poles and cytosolic RNA stress granules. Our results suggest that ZAP-mediated viral mRNA degradation is facilitated by PAR, and provides a biophysical rationale for the reported association of ZAP with RNA stress granules.


Asunto(s)
VIH-1/metabolismo , Virus de la Leucemia Murina/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Dedos de Zinc , Animales , Antivirales/farmacología , Cristalografía por Rayos X , Células HEK293 , Células HeLa , Humanos , Ratones , Mutación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Estabilidad del ARN , ARN Viral , Proteínas de Unión al ARN/farmacología
2.
Nature ; 560(7719): 509-512, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30069050

RESUMEN

A short, 14-amino-acid segment called SP1, located in the Gag structural protein1, has a critical role during the formation of the HIV-1 virus particle. During virus assembly, the SP1 peptide and seven preceding residues fold into a six-helix bundle, which holds together the Gag hexamer and facilitates the formation of a curved immature hexagonal lattice underneath the viral membrane2,3. Upon completion of assembly and budding, proteolytic cleavage of Gag leads to virus maturation, in which the immature lattice is broken down; the liberated CA domain of Gag then re-assembles into the mature conical capsid that encloses the viral genome and associated enzymes. Folding and proteolysis of the six-helix bundle are crucial rate-limiting steps of both Gag assembly and disassembly, and the six-helix bundle is an established target of HIV-1 inhibitors4,5. Here, using a combination of structural and functional analyses, we show that inositol hexakisphosphate (InsP6, also known as IP6) facilitates the formation of the six-helix bundle and assembly of the immature HIV-1 Gag lattice. IP6 makes ionic contacts with two rings of lysine residues at the centre of the Gag hexamer. Proteolytic cleavage then unmasks an alternative binding site, where IP6 interaction promotes the assembly of the mature capsid lattice. These studies identify IP6 as a naturally occurring small molecule that promotes both assembly and maturation of HIV-1.


Asunto(s)
VIH-1/metabolismo , Fosfatos de Inositol/metabolismo , Virión/metabolismo , Ensamble de Virus , Arginina/metabolismo , Cápside/química , Cápside/metabolismo , Cristalografía por Rayos X , VIH-1/química , VIH-1/genética , Técnicas In Vitro , Lisina/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Virión/química , Virión/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
3.
Nature ; 563(7731): E22, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30158708

RESUMEN

In this Letter, the Protein Data Bank (PDB) accessions were incorrectly listed as '6BH5, 6BHT and 6BHS' instead of '6BHR, 6BHT and 6BHS'; this has been corrected online.

4.
J Virol ; 95(19): e0061521, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34287037

RESUMEN

The transition from an immature to a fully infectious mature retrovirus particle is associated with molecular switches that trigger dramatic conformational changes in the structure of the Gag proteins. A dominant maturation switch that stabilizes the immature capsid (CA) lattice is located downstream of the CA protein in many retroviral Gags. The HIV-1 Gag protein contains a stretch of 5 amino acid residues termed the "clasp motif," important for the organization of the hexameric subunits that provide stability to the overall immature HIV-1 shell. Sequence alignment of the CA C-terminal domains (CTDs) of HIV-1 and Mason-Pfizer monkey virus (M-PMV) highlighted a spacer-like domain in M-PMV that may provide a comparable function. The importance of the sequences spanning the CA-nucleocapsid (NC) cleavage has been demonstrated by mutagenesis, but the specific requirements for the clasp motif in several steps of M-PMV particle assembly and maturation have not been determined in detail. In the present study, we report an examination of the role of the clasp motif in the M-PMV life cycle. We generated a series of M-PMV Gag mutants and assayed for assembly of the recombinant proteins in vitro and for the assembly, maturation, release, genomic RNA packaging, and infectivity of the mutant viruses in vivo. The mutants revealed major defects in virion assembly and release in HEK 293T and HeLa cells and even larger defects in infectivity. Our data identify the clasp motif as a fundamental contributor to CA-CTD interactions necessary for efficient retroviral infection. IMPORTANCE The C-terminal domain of the capsid protein of many retroviruses has been shown to be critical for virion assembly and maturation, but the functions of this region of M-PMV are uncertain. We show that a short "clasp" motif in the capsid domain of the M-PMV Gag protein plays a key role in M-PMV virion assembly, genome packaging, and infectivity.


Asunto(s)
Proteínas de la Cápside/metabolismo , Productos del Gen gag/química , Productos del Gen gag/metabolismo , Virus del Mono Mason-Pfizer/fisiología , Virión/metabolismo , Ensamble de Virus , Secuencias de Aminoácidos , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Microscopía por Crioelectrón , Productos del Gen gag/genética , Genoma Viral , Células HEK293 , Células HeLa , Humanos , Virus del Mono Mason-Pfizer/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Dominios Proteicos , ARN Viral/genética , ARN Viral/metabolismo , Empaquetamiento del Genoma Viral
5.
J Virol ; 94(5)2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31801870

RESUMEN

The assembly of an orthoretrovirus such as HIV-1 requires the coordinated functioning of multiple biochemical activities of the viral Gag protein. These activities include membrane targeting, lattice formation, packaging of the RNA genome, and recruitment of cellular cofactors that modulate assembly. In most previous studies, these Gag activities have been investigated individually, which provided somewhat limited insight into how they functionally integrate during the assembly process. Here, we report the development of a biochemical reconstitution system that allowed us to investigate how Gag lattice formation, RNA binding, and the assembly cofactor inositol hexakisphosphate (IP6) synergize to generate immature virus particles in vitro The results identify an important rate-limiting step in assembly and reveal new insights into how RNA and IP6 promote immature Gag lattice formation. The immature virus-like particles can be converted into mature capsid-like particles by the simple addition of viral protease, suggesting that it is possible in principle to fully biochemically reconstitute the sequential processes of HIV-1 assembly and maturation from purified components.IMPORTANCE Assembly and maturation are essential steps in the replication of orthoretroviruses such as HIV-1 and are proven therapeutic targets. These processes require the coordinated functioning of the viral Gag protein's multiple biochemical activities. We describe here the development of an experimental system that allows an integrative analysis of how Gag's multiple functionalities cooperate to generate a retrovirus particle. Our current studies help to illuminate how Gag synergizes the formation of the virus compartment with RNA binding and how these activities are modulated by the small molecule IP6. Further development and use of this system should lead to a more comprehensive understanding of the molecular mechanisms of HIV-1 assembly and maturation and may provide new insights for the development of antiretroviral drugs.


Asunto(s)
VIH-1/genética , VIH-1/fisiología , Ensamble de Virus/genética , Ensamble de Virus/fisiología , Cápside/metabolismo , Humanos , Microscopía Electrónica , Modelos Moleculares , Ácido Fítico , Virión/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
6.
J Virol ; 95(2)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33115869

RESUMEN

The human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein forms a conical lattice around the viral ribonucleoprotein complex (vRNP) consisting of a dimeric viral genome and associated proteins, together constituting the viral core. Upon entry into target cells, the viral core undergoes a process termed uncoating, during which CA molecules are shed from the lattice. Although the timing and degree of uncoating are important for reverse transcription and integration, the molecular basis of this phenomenon remains unclear. Using complementary approaches, we assessed the impact of core destabilization on the intrinsic stability of the CA lattice in vitro and fates of viral core components in infected cells. We found that substitutions in CA can impact the intrinsic stability of the CA lattice in vitro in the absence of vRNPs, which mirrored findings from an assessment of CA stability in virions. Altering CA stability tended to increase the propensity to form morphologically aberrant particles, in which the vRNPs were mislocalized between the CA lattice and the viral lipid envelope. Importantly, destabilization of the CA lattice led to premature dissociation of CA from vRNPs in target cells, which was accompanied by proteasomal-independent losses of the viral genome and integrase enzyme. Overall, our studies show that the CA lattice protects the vRNP from untimely degradation in target cells and provide the mechanistic basis of how CA stability influences reverse transcription.IMPORTANCE The human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein forms a conical lattice around the viral RNA genome and the associated viral enzymes and proteins, together constituting the viral core. Upon infection of a new cell, viral cores are released into the cytoplasm where they undergo a process termed "uncoating," i.e., shedding of CA molecules from the conical lattice. Although proper and timely uncoating has been shown to be important for reverse transcription, the molecular mechanisms that link these two events remain poorly understood. In this study, we show that destabilization of the CA lattice leads to premature dissociation of CA from viral cores, which exposes the viral genome and the integrase enzyme for degradation in target cells. Thus, our studies demonstrate that the CA lattice protects the viral ribonucleoprotein complexes from untimely degradation in target cells and provide the first causal link between how CA stability affects reverse transcription.


Asunto(s)
Cápside/metabolismo , Genoma Viral , Integrasa de VIH/metabolismo , VIH-1/fisiología , Desencapsidación Viral , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Línea Celular , Cricetinae , Humanos , Mutación , ARN Viral/metabolismo , Transcripción Reversa , Proteínas del Núcleo Viral/metabolismo , Virión/genética , Virión/metabolismo
7.
J Virol ; 92(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29997211

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) displays the unique ability to infect nondividing cells. The capsid of HIV-1 is the viral determinant for viral nuclear import. To understand the cellular factors involved in the ability of HIV-1 to infect nondividing cells, we sought to find capsid mutations that allow the virus to infect dividing but not nondividing cells. Because the interaction of capsid with the nucleoporin protein 153 (Nup153) is important for nuclear import of HIV-1, we solved new crystal structures of hexameric HIV-1 capsid in complex with a Nup153-derived peptide containing a phenylalanine-glycine repeat (FG repeat), which we used to guide structure-based mutagenesis of the capsid-binding interface. HIV-1 viruses with mutations in these capsid residues were tested for their ability to infect dividing and nondividing cells. HIV-1 viruses with capsid N57 substitutions infected dividing but not nondividing cells. Interestingly, HIV-1 viruses with N57 mutations underwent reverse transcription but not nuclear translocation. The mutant capsids also lost the ability to interact with Nup153 and CPSF6. The use of small molecules PF74 and BI-2 prevented the interaction of FG-containing nucleoporins (Nups), such as Nup153, with the HIV-1 core. Analysis of integration sites in HIV-1 viruses with N57 mutations revealed diminished integration into transcriptionally active genes in a manner resembling that of HIV-1 in CPSF6 knockout cells or that of HIV-1-N74D. The integration pattern of the N57 mutant HIV-1 can be explained by loss of capsid interaction with CPSF6, whereas capsid interaction with Nup153 is required for HIV-1 to infect nondividing cells. Additionally, the observed viral integration profiles suggested that integration site selection is a multiparameter process that depends upon nuclear factors and the state of the cellular chromatin.IMPORTANCE One of the key advantages that distinguish lentiviruses, such as HIV-1, from all other retroviruses is its ability to infect nondividing cells. Interaction of the HIV-1 capsid with Nup153 and CPSF6 is important for nuclear entry and integration; however, the contribution of each of these proteins to nuclear import and integration is not clear. Using genetics, we demonstrated that these proteins contribute to different processes: Nup153 is essential for the HIV-1 nuclear import in nondividing cells, and CPSF6 is important for HIV-1 integration. In addition, nuclear factors such as CPSF6 and the state of the chromatin are known to be important for integration site selection; nevertheless, the preferential determinant influencing integration site selection is not known. This work demonstrates that integration site selection is a multiparameter process that depends upon nuclear factors and the state of the cellular chromatin.


Asunto(s)
Cápside/metabolismo , División Celular , VIH-1/metabolismo , Mutación , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Transporte Activo de Núcleo Celular/genética , Línea Celular , Técnicas de Silenciamiento del Gen , VIH-1/genética , Humanos , Poro Nuclear/genética , Poro Nuclear/virología , Proteínas de Complejo Poro Nuclear/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
8.
J Am Chem Soc ; 138(37): 12029-32, 2016 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-27593947

RESUMEN

Maturation of HIV-1 requires disassembly of the Gag polyprotein lattice, which lines the viral membrane in the immature state, and subsequent assembly of the mature capsid protein lattice, which encloses viral RNA in the mature state. Metastability of the immature lattice has been proposed to depend on the existence of a structurally ordered, α-helical segment spanning the junction between capsid (CA) and spacer peptide 1 (SP1) subunits of Gag, a segment that is dynamically disordered in the mature capsid lattice. We report solid state nuclear magnetic resonance (ssNMR) measurements on the immature lattice in noncrystalline, spherical virus-like particles (VLPs) derived from Gag. The ssNMR data provide definitive evidence for this critical α-helical segment in the VLPs. Differences in ssNMR chemical shifts and signal intensities between immature and mature lattice assemblies also support a major rearrangement of intermolecular interactions in the maturation process, consistent with recent models from electron cryomicroscopy and X-ray crystallography.


Asunto(s)
Proteínas de la Cápside/química , VIH-1/fisiología , Espectroscopía de Resonancia Magnética/métodos , Ensamble de Virus/fisiología , Modelos Moleculares , Conformación Proteica
9.
J Biol Chem ; 289(32): 22172-82, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24942736

RESUMEN

Antimicrobial peptides are important as the first line of innate defense, through their tendency to disrupt bacterial membranes or intracellular pathways and potentially as the next generation of antibiotics. How they protect wet epithelia is not entirely clear, with most individually inactive under physiological conditions and many preferentially targeting Gram-positive bacteria. Tears covering the surface of the eye are bactericidal for Gram-positive and -negative bacteria. Here we narrow much of the bactericidal activity to a latent C-terminal fragment in the prosecretory mitogen lacritin and report that the mechanism combines membrane permeabilization with rapid metabolic changes, including reduced levels of dephosphocoenzyme A, spermidine, putrescine, and phosphatidylethanolamines and elevated alanine, leucine, phenylalanine, tryptophan, proline, glycine, lysine, serine, glutamate, cadaverine, and pyrophosphate. Thus, death by metabolic stress parallels cellular attempts to survive. Cleavage-dependent appearance of the C-terminal cationic amphipathic α-helix is inducible within hours by Staphylococcus epidermidis and slowly by another mechanism, in a chymotrypsin- or leupeptin protease-inhibitable manner. Although bactericidal at low micromolar levels, within a biphasic 1-10 nM dose optimum, the same domain is mitogenic and cytoprotective for epithelia via a syndecan-1 targeting mechanism dependent on heparanase. Thus, the C terminus of lacritin is multifunctional by dose and proteolytic processing and appears to play a key role in the innate protection of the eye, with wider potential benefit elsewhere as lacritin flows from exocrine secretory cells.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Lágrimas/inmunología , Lágrimas/metabolismo , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/inmunología , Escherichia coli/inmunología , Escherichia coli/metabolismo , Glicoproteínas/inmunología , Humanos , Inmunidad Innata , Metaboloma , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/metabolismo , Estructura Terciaria de Proteína , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Staphylococcus epidermidis/inmunología , Staphylococcus epidermidis/patogenicidad
10.
Nat Struct Mol Biol ; 30(3): 383-390, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36759579

RESUMEN

The HIV-1 capsid is a fullerene cone made of quasi-equivalent hexamers and pentamers of the viral CA protein. Typically, quasi-equivalent assembly of viral capsid subunits is controlled by a molecular switch. Here, we identify a Thr-Val-Gly-Gly motif that modulates CA hexamer/pentamer switching by folding into a 310 helix in the pentamer and random coil in the hexamer. Manipulating the coil/helix configuration of the motif allowed us to control pentamer and hexamer formation in a predictable manner, thus proving its function as a molecular switch. Importantly, the switch also remodels the common binding site for host factors that are critical for viral replication and the new ultra-potent HIV-1 inhibitor lenacapavir. This study reveals that a critical assembly element also modulates the post-assembly and viral replication functions of the HIV-1 capsid and provides new insights on capsid function and inhibition.


Asunto(s)
Cápside , VIH-1 , Cápside/química , VIH-1/química , Proteínas de la Cápside/química
11.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 2): 45-50, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36748341

RESUMEN

Niemann-Pick C1 protein (NPC1) is a membrane protein that primarily resides in late endosomes and lysosomes, and plays an important role in cholesterol homeostasis in the cell. The second luminal domain of NPC1 (NPC1-C) serves as the intracellular receptor for Ebola and Marburg viruses. Here, the recombinant production of nonglycosylated and glycosylated NPC1-C and a new crystal form of the nonglycosylated protein are reported. The crystals belonged to space group P21 and diffracted to 2.3 Šresolution. The structure is similar to other reported structures of NPC1-C, with differences observed in the protruding loops when compared with NPC1-C in complex with Ebola virus glycoprotein or NPC2.


Asunto(s)
Glicoproteínas de Membrana , Proteína Niemann-Pick C1 , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteína Niemann-Pick C1/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cristalografía por Rayos X , Glicoproteínas/química , Lisosomas/metabolismo
12.
Nat Commun ; 14(1): 1237, 2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871077

RESUMEN

HIV-1 maturation inhibitors (MIs), Bevirimat (BVM) and its analogs interfere with the catalytic cleavage of spacer peptide 1 (SP1) from the capsid protein C-terminal domain (CACTD), by binding to and stabilizing the CACTD-SP1 region. MIs are under development as alternative drugs to augment current antiretroviral therapies. Although promising, their mechanism of action and associated virus resistance pathways remain poorly understood at the molecular, biochemical, and structural levels. We report atomic-resolution magic-angle-spinning NMR structures of microcrystalline assemblies of CACTD-SP1 complexed with BVM and/or the assembly cofactor inositol hexakisphosphate (IP6). Our results reveal a mechanism by which BVM disrupts maturation, tightening the 6-helix bundle pore and quenching the motions of SP1 and the simultaneously bound IP6. In addition, BVM-resistant SP1-A1V and SP1-V7A variants exhibit distinct conformational and binding characteristics. Taken together, our study provides a structural explanation for BVM resistance as well as guidance for the design of new MIs.


Asunto(s)
VIH-1 , Triterpenos , Cápside , Proteínas de la Cápside , Catálisis
13.
Front Mol Biosci ; 8: 767040, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34957215

RESUMEN

Histidine residues play important structural and functional roles in proteins, such as serving as metal-binding ligands, mediating enzyme catalysis, and modulating proton channel activity. Many of these activities are modulated by the ionization state of the imidazole ring. Here we present a fast MAS NMR approach for the determination of protonation and tautomeric states of His at frequencies of 40-62 kHz. The experiments combine 1H detection with selective magnetization inversion techniques and transferred echo double resonance (TEDOR)-based filters, in 2D heteronuclear correlation experiments. We illustrate this approach using microcrystalline assemblies of HIV-1 CACTD-SP1 protein.

14.
Elife ; 52016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27416583

RESUMEN

Virus assembly and maturation proceed through the programmed operation of molecular switches, which trigger both local and global structural rearrangements to produce infectious particles. HIV-1 contains an assembly and maturation switch that spans the C-terminal domain (CTD) of the capsid (CA) region and the first spacer peptide (SP1) of the precursor structural protein, Gag. The crystal structure of the CTD-SP1 Gag fragment is a goblet-shaped hexamer in which the cup comprises the CTD and an ensuing type II ß-turn, and the stem comprises a 6-helix bundle. The ß-turn is critical for immature virus assembly and the 6-helix bundle regulates proteolysis during maturation. This bipartite character explains why the SP1 spacer is a critical element of HIV-1 Gag but is not a universal property of retroviruses. Our results also indicate that HIV-1 maturation inhibitors suppress unfolding of the CA-SP1 junction and thereby delay access of the viral protease to its substrate.


Asunto(s)
Proteínas de la Cápside/ultraestructura , Cápside/ultraestructura , VIH-1/ultraestructura , Virión/ultraestructura , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/ultraestructura , Secuencia de Aminoácidos , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , VIH-1/genética , VIH-1/metabolismo , Modelos Moleculares , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios Proteicos , Multimerización de Proteína , Proteolisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Virión/genética , Virión/metabolismo , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA