Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Kidney Int ; 91(6): 1398-1409, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28187982

RESUMEN

To maintain potassium homeostasis, kidneys exert flow-dependent potassium secretion to facilitate kaliuresis in response to elevated dietary potassium intake. This process involves stimulation of calcium-activated large conductance maxi-K (BK) channels in the distal nephron, namely the connecting tubule and the collecting duct. Recent evidence suggests that the TRPV4 channel is a critical determinant of flow-dependent intracellular calcium elevations in these segments of the renal tubule. Here, we demonstrate that elevated dietary potassium intake (five percent potassium) increases renal TRPV4 mRNA and protein levels in an aldosterone-dependent manner and causes redistribution of the channel to the apical plasma membrane in native collecting duct cells. This, in turn, leads to augmented TRPV4-mediated flow-dependent calcium ion responses in freshly isolated split-opened collecting ducts from mice fed the high potassium diet. Genetic TRPV4 ablation greatly diminished BK channel activity in collecting duct cells pointing to a reduced capacity to excrete potassium. Consistently, elevated potassium intake induced hyperkalemia in TRPV4 knockout mice due to deficient renal potassium excretion. Thus, regulation of TRPV4 activity in the distal nephron by dietary potassium is an indispensable component of whole body potassium balance.


Asunto(s)
Hiperpotasemia/metabolismo , Túbulos Renales/metabolismo , Potasio en la Dieta/metabolismo , Eliminación Renal , Canales Catiónicos TRPV/metabolismo , Adaptación Fisiológica , Animales , Calcio/metabolismo , Predisposición Genética a la Enfermedad , Homeostasis , Hiperpotasemia/genética , Hiperpotasemia/fisiopatología , Túbulos Renales/fisiopatología , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Potasio en la Dieta/administración & dosificación , Receptores de Mineralocorticoides/metabolismo , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/genética
2.
Proc Natl Acad Sci U S A ; 110(14): 5600-5, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23503843

RESUMEN

To uncover the potential cardiovascular effects of human polymorphisms influencing transforming growth factor ß1 (TGFß1) expression, we generated mice with Tgfb1 mRNA expression graded in five steps from 10% to 300% normal. Adrenal expression of the genes for mineralocorticoid-producing enzymes ranged from 50% normal in the hypermorphs at age 12 wk to 400% normal in the hypomorphs accompanied with proportionate changes in plasma aldosterone levels, whereas plasma volumes ranged from 50% to 150% normal accompanied by marked compensatory changes in plasma angiotensin II and renin levels. The aldosterone/renin ratio ranged from 0.3 times normal in the 300% hypermorphs to six times in the 10% hypomorphs, which have elevated blood pressure. Urinary output of water and electrolytes are markedly decreased in the 10% hypomorphs without significant change in the glomerular filtration rate. Renal activities for the Na(+), K(+)-ATPase, and epithelial sodium channel are markedly increased in the 10% hypomorphs. The hypertension in the 10% hypomorphs is corrected by spironolactone or amiloride at doses that do not change blood pressure in wild-type mice. Thus, changes in Tgfb1 expression cause marked progressive changes in multiple systems that regulate blood pressure and fluid homeostasis, with the major effects being mediated by changes in adrenocortical function.


Asunto(s)
Aldosterona/sangre , Regulación de la Expresión Génica/fisiología , Hiperaldosteronismo/etiología , Natriuresis/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Amilorida/farmacología , Angiotensina II/sangre , Animales , Presión Sanguínea/efectos de los fármacos , Cartilla de ADN/genética , Regulación de la Expresión Génica/genética , Tasa de Filtración Glomerular/fisiología , Hiperaldosteronismo/metabolismo , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Renina/sangre , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Espironolactona/farmacología , Factor de Crecimiento Transformador beta1/genética , Urinálisis
3.
J Biol Chem ; 288(28): 20306-14, 2013 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-23709216

RESUMEN

We have recently documented that the Ca(2+)-permeable TRPV4 channel, which is abundantly expressed in distal nephron cells, mediates cellular Ca(2+) responses to elevated luminal flow. In this study, we combined Fura-2-based [Ca(2+)]i imaging with immunofluorescence microscopy in isolated split-opened distal nephrons of C57BL/6 mice to probe the molecular determinants of TRPV4 activity and subcellular distribution. We found that activation of the PKC pathway with phorbol 12-myristate 13-acetate significantly increased [Ca(2+)]i responses to flow without affecting the subcellular distribution of TRPV4. Inhibition of PKC with bisindolylmaleimide I diminished cellular responses to elevated flow. In contrast, activation of the PKA pathway with forskolin did not affect TRPV4-mediated [Ca(2+)]i responses to flow but markedly shifted the subcellular distribution of the channel toward the apical membrane. These actions were blocked with the specific PKA inhibitor H-89. Concomitant activation of the PKA and PKC cascades additively enhanced the amplitude of flow-induced [Ca(2+)]i responses and greatly increased basal [Ca(2+)]i levels, indicating constitutive TRPV4 activation. This effect was precluded by the selective TRPV4 antagonist HC-067047. Therefore, the functional status of the TRPV4 channel in the distal nephron is regulated by two distinct signaling pathways. Although the PKA-dependent cascade promotes TRPV4 trafficking and translocation to the apical membrane, the PKC-dependent pathway increases the activity of the channel on the plasma membrane.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Nefronas/metabolismo , Proteína Quinasa C/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Calcio/metabolismo , Colforsina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Activación Enzimática/efectos de los fármacos , Fura-2/química , Fura-2/metabolismo , Técnicas In Vitro , Indoles/farmacología , Isoquinolinas/farmacología , Túbulos Renales Colectores/metabolismo , Maleimidas/farmacología , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Morfolinas/farmacología , Nefronas/efectos de los fármacos , Perfusión/métodos , Ésteres del Forbol/farmacología , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas/efectos de los fármacos , Pirroles/farmacología , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores
4.
Am J Physiol Renal Physiol ; 305(9): F1277-87, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23986512

RESUMEN

It is recognized that dopamine promotes natriuresis by inhibiting multiple transporting systems in the proximal tubule. In contrast, less is known about the molecular targets of dopamine actions on water-electrolyte transport in the cortical collecting duct (CCD). Epithelial cells in the CCD are exposed to dopamine, which is synthesized locally or secreted from sympathetic nerve endings. Basolateral K(+) channels in the distal renal tubule are critical for K(+) recycling and controlling basolateral membrane potential to establish the driving force for Na(+) reabsorption. Here, we demonstrate that Kir4.1 and Kir5.1 are highly expressed in the mouse kidney cortex and are localized to the basolateral membrane of the CCD. Using patch-clamp electrophysiology in freshly isolated CCDs, we detected highly abundant 40-pS and scarce 20-pS single channel conductances, most likely representing Kir4.1/5.1 and Kir4.1 channels, respectively. Dopamine reversibly decreased the open probability of both channels, with a relatively greater action on the Kir4.1/5.1 heterodimer. This effect was mediated by D2-like but not D1-like dopamine receptors. PKC blockade abolished the inhibition of basolateral K(+) channels by dopamine. Importantly, dopamine significantly decreased the amplitude of Kir4.1/5.1 and Kir4.1 unitary currents. Consistently, dopamine induced an acute depolarization of basolateral membrane potential, as directly monitored using current-clamp mode in isolated CCDs. Therefore, we demonstrate that dopamine inhibits basolateral Kir4.1/5.1 and Kir4.1 channels in CCD cells via stimulation of D2-like receptors and subsequently PKC. This leads to depolarization of the basolateral membrane and a decreased driving force for Na(+) reabsorption in the distal renal tubule.


Asunto(s)
Dopamina/metabolismo , Corteza Renal/metabolismo , Túbulos Renales Colectores/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Animales , Corteza Renal/citología , Túbulos Renales Colectores/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Proteína Quinasa C/metabolismo , Receptores de Dopamina D2/metabolismo , Transducción de Señal , Sodio/metabolismo , Canal Kir5.1
6.
Cell Rep ; 16(1): 106-119, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27320922

RESUMEN

The molecular mechanisms of chronic pain are poorly understood and effective mechanism-based treatments are lacking. Here, we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected chronic mechanical and thermal hypersensitivity due to sustained elevated circulating adenosine. Extending from Ada(-/-) mice, we further discovered that prolonged elevated adenosine contributed to chronic pain behaviors in two additional independent animal models: sickle cell disease mice, a model of severe pain with limited treatment, and complete Freund's adjuvant paw-injected mice, a well-accepted inflammatory model of chronic pain. Mechanistically, we revealed that activation of adenosine A2B receptors on myeloid cells caused nociceptor hyperexcitability and promoted chronic pain via soluble IL-6 receptor trans-signaling, and our findings determined that prolonged accumulated circulating adenosine contributes to chronic pain by promoting immune-neuronal interaction and revealed multiple therapeutic targets.


Asunto(s)
Adenosina/metabolismo , Dolor Crónico/metabolismo , Sistema Nervioso/inmunología , Sistema Nervioso/patología , Receptor de Adenosina A2B/metabolismo , Adenosina/sangre , Adenosina Desaminasa/metabolismo , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/patología , Animales , Conducta Animal , Dolor Crónico/sangre , Dolor Crónico/patología , Dolor Crónico/fisiopatología , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Regulación de la Expresión Génica , Inflamación/patología , Interleucina-6/metabolismo , Ratones Noqueados , Células Mieloides/metabolismo , Sistema Nervioso/fisiopatología , Nociceptores/metabolismo , Receptores de Interleucina-6/metabolismo , Reflejo , Factor de Transcripción STAT3/metabolismo , Células Receptoras Sensoriales/patología , Transducción de Señal , Solubilidad , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Regulación hacia Arriba
7.
PLoS One ; 9(4): e95149, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24762817

RESUMEN

The Ca2+-activated, maxi-K (BK) K+ channel, with low Ca2+-binding affinity, is expressed in the distal tubule of the nephron and contributes to flow-dependent K+ secretion. In the present study we demonstrate that the Ca2+-activated, SK3 (KCa2.3) K+ channel, with high Ca2+-binding affinity, is also expressed in the mouse kidney (RT-PCR, immunoblots). Immunohistochemical evaluations using tubule specific markers demonstrate significant expression of SK3 in the distal tubule and the entire collecting duct system, including the connecting tubule (CNT) and cortical collecting duct (CCD). In CNT and CCD, main sites for K+ secretion, the highest levels of expression were along the apical (luminal) cell membranes, including for both principal cells (PCs) and intercalated cells (ICs), posturing the channel for Ca2+-dependent K+ secretion. Fluorescent assessment of cell membrane potential in native, split-opened CCD, demonstrated that selective activation of the Ca2+-permeable TRPV4 channel, thereby inducing Ca2+ influx and elevating intracellular Ca2+ levels, activated both the SK3 channel and the BK channel leading to hyperpolarization of the cell membrane. The hyperpolarization response was decreased to a similar extent by either inhibition of SK3 channel with the selective SK antagonist, apamin, or by inhibition of the BK channel with the selective antagonist, iberiotoxin (IbTX). Addition of both inhibitors produced a further depolarization, indicating cooperative effects of the two channels on Vm. It is concluded that SK3 is functionally expressed in the distal nephron and collecting ducts where induction of TRPV4-mediated Ca2+ influx, leading to elevated intracellular Ca2+ levels, activates this high Ca2+-affinity K+ channel. Further, with sites of expression localized to the apical cell membrane, especially in the CNT and CCD, SK3 is poised to be a key pathway for Ca2+-dependent regulation of membrane potential and K+ secretion.


Asunto(s)
Túbulos Renales Distales/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Canales Catiónicos TRPV/fisiología , Animales , Acuaporina 2/metabolismo , Señalización del Calcio , Expresión Génica , Riñón/citología , Riñón/fisiología , Potenciales de la Membrana , Ratones Endogámicos C57BL , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA