Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(16): 8532-8549, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37216608

RESUMEN

Friedreich's ataxia (FRDA) is caused by expansions of GAA•TTC repeats in the first intron of the human FXN gene that occur during both intergenerational transmissions and in somatic cells. Here we describe an experimental system to analyze large-scale repeat expansions in cultured human cells. It employs a shuttle plasmid that can replicate from the SV40 origin in human cells or be stably maintained in S. cerevisiae utilizing ARS4-CEN6. It also contains a selectable cassette allowing us to detect repeat expansions that accumulated in human cells upon plasmid transformation into yeast. We indeed observed massive expansions of GAA•TTC repeats, making it the first genetically tractable experimental system to study large-scale repeat expansions in human cells. Further, GAA•TTC repeats stall replication fork progression, while the frequency of repeat expansions appears to depend on proteins implicated in replication fork stalling, reversal, and restart. Locked nucleic acid (LNA)-DNA mixmer oligonucleotides and peptide nucleic acid (PNA) oligomers, which interfere with triplex formation at GAA•TTC repeats in vitro, prevented the expansion of these repeats in human cells. We hypothesize, therefore, that triplex formation by GAA•TTC repeats stall replication fork progression, ultimately leading to repeat expansions during replication fork restart.


Asunto(s)
Ataxia de Friedreich , Oligonucleótidos , Ácidos Nucleicos de Péptidos , Expansión de Repetición de Trinucleótido , Humanos , ADN , Replicación del ADN/efectos de los fármacos , Ataxia de Friedreich/genética , Proteínas de Unión a Hierro/genética , Oligonucleótidos/farmacología , Ácidos Nucleicos de Péptidos/farmacología , Saccharomyces cerevisiae/genética
2.
Annu Rev Pharmacol Toxicol ; 59: 605-630, 2019 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-30285540

RESUMEN

Oligonucleotides (ONs) can interfere with biomolecules representing the entire extended central dogma. Antisense gapmer, steric block, splice-switching ONs, and short interfering RNA drugs have been successfully developed. Moreover, antagomirs (antimicroRNAs), microRNA mimics, aptamers, DNA decoys, DNAzymes, synthetic guide strands for CRISPR/Cas, and innate immunity-stimulating ONs are all in clinical trials. DNA-targeting, triplex-forming ONs and strand-invading ONs have made their mark on drug development research, but not yet as medicines. Both design and synthetic nucleic acid chemistry are crucial for achieving biologically active ONs. The dominating modifications are phosphorothioate linkages, base methylation, and numerous 2'-substitutions in the furanose ring, such as 2'-fluoro, O-methyl, or methoxyethyl. Locked nucleic acid and constrained ethyl, a related variant, are bridged forms where the 2'-oxygen connects to the 4'-carbon in the sugar. Phosphorodiamidate morpholino oligomers, carrying a modified heterocyclic backbone ring, have also been commercialized. Delivery remains a major obstacle, but systemic administration and intrathecal infusion are used for treatment of the liver and brain, respectively.


Asunto(s)
Oligonucleótidos/uso terapéutico , Ensayos Clínicos como Asunto , Humanos , Morfolinos/uso terapéutico , Ácidos Nucleicos/metabolismo , Oligonucleótidos Antisentido/uso terapéutico
3.
Scand J Immunol ; 95(4): e13153, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35244285

RESUMEN

Infections with SARS-CoV-2 have been unduly severe in patients with haematological malignancies, in particular in those with chronic lymphocytic leukaemia (CLL). Based on a series of observations, we propose that an underlying mechanism for the aggressive clinical course of COVID-19 in CLL is a paucity of plasmacytoid dendritic cells (pDCs) in these patients. Indeed, pDCs express Toll-like receptor 7 (TLR7), which together with interferon-regulatory factor 7 (IRF7), enables pDCs to produce large amounts of type I interferons, essential for combating COVID-19. Treatment of CLL with Bruton's tyrosine kinase (BTK) inhibitors increased the number of pDCs, likely secondarily to the reduction in the tumour burden.


Asunto(s)
COVID-19 , Leucemia Linfocítica Crónica de Células B , COVID-19/complicaciones , Células Dendríticas , Humanos , Factor 7 Regulador del Interferón , Leucemia Linfocítica Crónica de Células B/complicaciones , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , SARS-CoV-2 , Receptor Toll-Like 7
4.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35328524

RESUMEN

RNA molecules can adopt specific RNA triplex structures to execute critical biological functions. Human adenoviruses (HAdVs) are abundant pathogens encoding the essential, noncoding virus-associated RNA I (VA RNAI). Here, we employ a triplex-specific probing assay, based on the intercalating and cleaving agent benzoquinoquinoxaline 1, 10-phenanthroline (BQQ-OP), to unravel a potential RNA triplex formation in VA RNAI. The BQQ-OP cleavage of the pathogenic HAdV type 4 (HAdV-4) VA RNAI indicates that a potential triplex is formed involving the highly conserved stem 4 of the central domain and side stem 7. Further, the integrity of the HAdV-4 VA RNAI side stem 7 contributes to a potential triplex formation in vitro and virus growth in vivo. Collectively, we propose that the HAdV-4 VA RNAI can potentially form a biologically relevant triplex structure.


Asunto(s)
Adenovirus Humanos , Adenovirus Humanos/genética , Humanos , ARN Bacteriano
6.
Nucleic Acids Res ; 45(9): 5153-5169, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28334749

RESUMEN

Huntington's disease (HD) is a fatal, neurodegenerative disorder in which patients suffer from mobility, psychological and cognitive impairments. Existing therapeutics are only symptomatic and do not significantly alter the disease progression or increase life expectancy. HD is caused by expansion of the CAG trinucleotide repeat region in exon 1 of the Huntingtin gene (HTT), leading to the formation of mutant HTT transcripts (muHTT). The toxic gain-of-function of muHTT protein is a major cause of the disease. In addition, it has been suggested that the muHTT transcript contributes to the toxicity. Thus, reduction of both muHTT mRNA and protein levels would ideally be the most useful therapeutic option. We herein present a novel strategy for HD treatment using oligonucleotides (ONs) directly targeting the HTT trinucleotide repeat DNA. A partial, but significant and potentially long-term, HTT knock-down of both mRNA and protein was successfully achieved. Diminished phosphorylation of HTT gene-associated RNA-polymerase II is demonstrated, suggestive of reduced transcription downstream the ON-targeted repeat. Different backbone chemistries were found to have a strong impact on the ON efficiency. We also successfully use different delivery vehicles as well as naked uptake of the ONs, demonstrating versatility and possibly providing insights for in vivo applications.


Asunto(s)
Regulación hacia Abajo/efectos de los fármacos , Proteína Huntingtina/genética , Oligonucleótidos Fosforotioatos/farmacología , Expansión de Repetición de Trinucleótido/genética , Alelos , ADN/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Proteína Huntingtina/metabolismo , Desnaturalización de Ácido Nucleico/efectos de los fármacos , Péptidos/metabolismo , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mapeo Restrictivo , Rayos Ultravioleta
7.
Molecules ; 24(6)2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-30917503

RESUMEN

2'-O-Methylribo phosphorothioate oligonucleotides incorporating cyclopalladated benzylamine conjugate groups at their 5'-termini have been prepared and their ability to hybridize with a designated target sequence was assessed by conventional UV melting experiments. The oligonucleotides were further examined in splice-switching experiments in human cervical cancer (HeLa Luc/705), human liver (HuH7_705), and human osteosarcoma (U-2 OS_705) reporter cell lines. Melting temperatures of duplexes formed by the modified oligonucleotides were approximately 5 °C lower than melting temperatures of the respective unmodified duplexes. The cyclopalladated oligonucleotides functioned as splice-correcting agents in the HeLa Luc/705 cell line somewhat more efficiently than their unmodified counterparts. Furthermore, the introduction of this chemical modification did not induce toxicity in cells. These results demonstrate the feasibility of using covalently metalated oligonucleotides as therapeutic agents.


Asunto(s)
Paladio/química , Oligonucleótidos Fosforotioatos/síntesis química , Empalme del ARN/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Células HeLa , Humanos , Estructura Molecular , Oligonucleótidos Fosforotioatos/química , Oligonucleótidos Fosforotioatos/farmacología
8.
Molecules ; 24(5)2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30871121

RESUMEN

MYC, originally named c-myc, is an oncogene deregulated in many different forms of cancer. Translocation of the MYC gene to an immunoglobulin gene leads to an overexpression and the development of Burkitt's lymphoma (BL). Sporadic BL constitutes one subgroup where one of the translocation sites is located at the 5'-vicinity of the two major MYC promoters P1 and P2. A non-B-DNA forming sequence within this region has been reported with the ability to form an intramolecular triplex (H-DNA) or a G-quadruplex. We have examined triplex formation at this site first by using a 17 bp triplex-forming oligonucleotide (TFO) and a double strand DNA (dsDNA) target corresponding to the MYC sequence. An antiparallel purine-motif triplex was detected using electrophoretic mobility shift assay. Furthermore, we probed for H-DNA formation using the BQQ-OP based triplex-specific cleavage assay, which indicated the formation of the structure in the supercoiled plasmid containing the corresponding region of the MYC promoter. Targeting non-B-DNA structures has therapeutic potential; therefore, we investigated their influence on strand-invasion of anti-gene oligonucleotides (ON)s. We show that in vitro, non-B-DNA formation at the vicinity of the ON target site facilitates dsDNA strand-invasion of the anti-gene ONs.


Asunto(s)
ADN/química , Genes myc/genética , Oligonucleótidos/química , Oligodesoxirribonucleótidos , Plásmidos/química , Regiones Promotoras Genéticas
9.
Biochem Biophys Res Commun ; 504(4): 749-752, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30217447

RESUMEN

Many cancer types carry mutations in protein tyrosine kinase (PTK) and such alterations frequently drive tumor progression. One category is gene translocation of PTKs yielding chimeric proteins with transforming capacity. In this study, we characterized the role of ITK-FER [Interleukin-2-inducible T-cell Kinase (ITK) gene fused with Feline Encephalitis Virus-Related kinase (FER) gene] and ITK-SYK [Interleukin-2-inducible T-cell Kinase (ITK) gene fused with the Spleen Tyrosine Kinase (SYK)] in Peripheral T Cell Lymphoma (PTCL) signaling. We observed an induction of tyrosine phosphorylation events in the presence of both ITK-FER and ITK-SYK. The downstream targets of ITK-FER and ITK-SYK were explored and STAT3 was found to be highly phosphorylated by these fusion kinases. In addition, the CD69 T-cell activation marker was significantly elevated. Apart from tyrosine kinase inhibitors acting directly on the fusions, we believe that drugs acting on downstream targets could serve as alternative cancer therapies for fusion PTKs.


Asunto(s)
Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Lectinas Tipo C/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Células Jurkat , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/metabolismo , Linfoma de Células T Periférico/patología , Ratones , Células 3T3 NIH , Proteínas de Fusión Oncogénica/genética , Fosforilación , Proteínas Tirosina Quinasas/genética , Quinasa Syk/genética , Quinasa Syk/metabolismo , Translocación Genética
10.
Nucleic Acids Res ; 44(5): 2007-19, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26857548

RESUMEN

Targeting and invading double-stranded DNA with synthetic oligonucleotides under physiological conditions remain a challenge. Bis-locked nucleic acids (bisLNAs) are clamp-forming oligonucleotides able to invade into supercoiled DNA via combined Hoogsteen and Watson-Crick binding. To improve the bisLNA design, we investigated its mechanism of binding. Our results suggest that bisLNAs bind via Hoogsteen-arm first, followed by Watson-Crick arm invasion, initiated at the tail. Based on this proposed hybridization mechanism, we designed next-generation bisLNAs with a novel linker able to stack to adjacent nucleobases, a new strategy previously not applied for any type of clamp-constructs. Although the Hoogsteen-arm limits the invasion, upon incorporation of the stacking linker, bisLNA invasion is significantly more efficient than for non-clamp, or nucleotide-linker containing LNA-constructs. Further improvements were obtained by substituting LNA with 2'-glycylamino-LNA, contributing a positive charge. For regular bisLNAs a 14-nt tail significantly enhances invasion. However, when two stacking linkers were incorporated, tail-less bisLNAs were able to efficiently invade. Finally, successful targeting of plasmids inside bacteria clearly demonstrates that strand invasion can take place in a biologically relevant context.


Asunto(s)
ADN Bacteriano/metabolismo , ADN Superhelicoidal/metabolismo , Glicina/análogos & derivados , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos/metabolismo , Secuencia de Bases , Sitios de Unión , ADN Bacteriano/antagonistas & inhibidores , ADN Bacteriano/química , ADN Superhelicoidal/química , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Oligonucleótidos/síntesis química , Oligonucleótidos Antisentido/síntesis química , Plásmidos/química , Plásmidos/metabolismo , Técnicas de Síntesis en Fase Sólida , Electricidad Estática , Relación Estructura-Actividad
11.
J Biol Chem ; 290(8): 5174-5189, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25561740

RESUMEN

Mutations in the human ChlR1 (DDX11) gene are associated with a unique genetic disorder known as Warsaw breakage syndrome characterized by cellular defects in genome maintenance. The DNA triplex helix structures that form by Hoogsteen or reverse Hoogsteen hydrogen bonding are examples of alternate DNA structures that can be a source of genomic instability. In this study, we have examined the ability of human ChlR1 helicase to destabilize DNA triplexes. Biochemical studies demonstrated that ChlR1 efficiently melted both intermolecular and intramolecular DNA triplex substrates in an ATP-dependent manner. Compared with other substrates such as replication fork and G-quadruplex DNA, triplex DNA was a preferred substrate for ChlR1. Also, compared with FANCJ, a helicase of the same family, the triplex resolving activity of ChlR1 is unique. On the other hand, the mutant protein from a Warsaw breakage syndrome patient failed to unwind these triplexes. A previously characterized triplex DNA-specific antibody (Jel 466) bound triplex DNA structures and inhibited ChlR1 unwinding activity. Moreover, cellular assays demonstrated that there were increased triplex DNA content and double-stranded breaks in ChlR1-depleted cells, but not in FANCJ(-/-) cells, when cells were treated with a triplex stabilizing compound benzoquinoquinoxaline, suggesting that ChlR1 melting of triple-helix structures is distinctive and physiologically important to defend genome integrity. On the basis of our results, we conclude that the abundance of ChlR1 known to exist in vivo is likely to be a strong deterrent to the stability of triplexes that can potentially form in the human genome.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ADN Helicasas/metabolismo , Trastornos por Deficiencias en la Reparación del ADN/enzimología , ADN/metabolismo , Genoma Humano , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , ARN Helicasas DEAD-box/genética , ADN/genética , ADN Helicasas/genética , Trastornos por Deficiencias en la Reparación del ADN/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Células HEK293 , Humanos
12.
Org Biomol Chem ; 14(23): 5210-3, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27203783

RESUMEN

To be able to target microRNAs also at stages where these are in a double stranded or hairpin form we have studied BisPNA designed to clamp the target and give sufficient affinity to allow for strand invasion. We show that BisPNA complexes are more stable with RNA than with DNA. In addition, 24-mer BisPNA (AntimiR) constructs form complexes with a hairpin RNA that is a model of the microRNA miR-376b, suggesting that PNA-clamping may be an effective way of targeting microRNAs.


Asunto(s)
MicroARNs/química , Ácidos Nucleicos de Péptidos/química , ARN/química , Emparejamiento Base , Secuencia de Bases , MicroARNs/genética
13.
Nucleic Acids Res ; 41(5): 3257-73, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23345620

RESUMEN

In spite of the many developments in synthetic oligonucleotide (ON) chemistry and design, invasion into double-stranded DNA (DSI) under physiological salt and pH conditions remains a challenge. In this work, we provide a new ON tool based on locked nucleic acids (LNAs), designed for strand invasion into duplex DNA (DSI). We thus report on the development of a clamp type of LNA ON-bisLNA-with capacity to bind and invade into supercoiled double-stranded DNA. The bisLNA links a triplex-forming, Hoogsteen-binding, targeting arm with a strand-invading Watson-Crick binding arm. Optimization was carried out by varying the number and location of LNA nucleotides and the length of the triplex-forming versus strand-invading arms. Single-strand regions in target duplex DNA were mapped using chemical probing. By combining design and increase in LNA content, it was possible to achieve a 100-fold increase in potency with 30% DSI at 450 nM using a bisLNA to plasmid ratio of only 21:1. Although this first conceptual report does not address the utility of bisLNA for the targeting of DNA in a chromosomal context, it shows bisLNA as a promising candidate for interfering also with cellular genes.


Asunto(s)
ADN Superhelicoidal/química , Oligonucleótidos/química , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Tampones (Química) , ADN/química , División del ADN , Enzimas de Restricción del ADN/química , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Oligonucleótidos/síntesis química , Plásmidos/química , Temperatura de Transición
14.
Blood Adv ; 8(8): 1981-1990, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38507738

RESUMEN

ABSTRACT: Bruton's tyrosine kinase (BTK) is an enzyme needed for B-cell survival, and its inhibitors have become potent targeted medicines for the treatment of B-cell malignancies. The initial activation event of cytoplasmic protein-tyrosine kinases is the phosphorylation of a conserved regulatory tyrosine in the catalytic domain, which in BTK is represented by tyrosine 551. In addition, the tyrosine 223 (Y223) residue in the SRC homology 3 (SH3) domain has, for more than 2 decades, generally been considered necessary for full enzymatic activity. The initial recognition of its potential importance stems from transformation assays using nonlymphoid cells. To determine the biological significance of this residue, we generated CRISPR-Cas-mediated knockin mice carrying a tyrosine to phenylalanine substitution (Y223F), maintaining aromaticity and bulkiness while prohibiting phosphorylation. Using a battery of assays to study leukocyte subsets and the morphology of lymphoid organs, as well as the humoral immune responses, we were unable to detect any difference between wild-type mice and the Y223F mutant. Mice resistant to irreversible BTK inhibitors, through a cysteine 481 to serine substitution (C481S), served as an additional immunization control and mounted similar humoral immune responses as Y223F and wild-type animals. Collectively, our findings suggest that phosphorylation of Y223 serves as a useful proxy for phosphorylation of phospholipase Cγ2 (PLCG2), the endogenous substrate of BTK. However, in contrast to a frequently held conception, this posttranslational modification is dispensable for the function of BTK.


Asunto(s)
Proteínas Tirosina Quinasas , Dominios Homologos src , Ratones , Animales , Agammaglobulinemia Tirosina Quinasa , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Secuencia de Aminoácidos , Tirosina
15.
Front Biosci (Landmark Ed) ; 28(6): 124, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37395037

RESUMEN

BACKGROUND: Bruton's tyrosine kinase (BTK) is a non-receptor type tyrosine kinase originally identified as the genetic signature responsible for X-linked agammaglobulinemia (XLA) when mutated. Its functional form is required for B lymphocyte maturation in both humans and mice, whereas loss-of-function causes a different form of developmental defect in the fruit fly, Drosophila melanogaster. METHODS: Ibrutinib and other therapeutic inhibitors of BTK have been extensively used to successfully treat various leukemias and lymphomas. Btk29A type 2 is the ortholog of BTK in the fruit fly. We show that feeding wild-type flies an ibrutinib-containing diet induces phenocopying of Btk29A mutants, i.e., failure in the fusion of left and right halves of the dorsal cuticles, partial loss of wing tissues and dysregulation of germ cell production. RESULTS: We have previously reported that Btk29A phosphorylates Drosophila Arm (ß-catenin), and ibrutinib reduces phosphorylation at Tyrosine142 of endogenously expressed ß-catenin in Cos7 cells transfected with Btk29A type 2 cDNA. CONCLUSIONS: Thus, Drosophila is suitable for screens of novel BTK inhibitor candidates and offers a unique in vivo system in which the mode of action of BTK inhibitors can be examined at the molecular, cellular, and organismal levels.


Asunto(s)
Drosophila melanogaster , Proteínas Tirosina Quinasas , Humanos , Animales , Ratones , Drosophila melanogaster/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , beta Catenina/metabolismo , Drosophila/metabolismo , Agammaglobulinemia Tirosina Quinasa/genética , Agammaglobulinemia Tirosina Quinasa/metabolismo
16.
Nucleic Acid Ther ; 33(2): 117-131, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36735581

RESUMEN

Huntington's disease is a neurodegenerative, trinucleotide repeat (TNR) disorder affecting both males and females. It is caused by an abnormal increase in the length of CAG•CTG TNR in exon 1 of the Huntingtin gene (HTT). The resultant, mutant HTT mRNA and protein cause neuronal toxicity, suggesting that reduction of their levels would constitute a promising therapeutic approach. We previously reported a novel strategy in which chemically modified oligonucleotides (ONs) directly target chromosomal DNA. These anti-gene ONs were able to downregulate both HTT mRNA and protein. In this study, various locked nucleic acid (LNA)/DNA mixmer anti-gene ONs were tested to investigate the effects of varying ON length, LNA content, and fatty acid modification on HTT expression. Altering the length did not significantly influence the ON potency, while LNA content was critical for activity. Utilization of palmitoyl-modified LNA monomers enhanced the ON activity relatively to the corresponding nonmodified LNA under serum starvation conditions. Furthermore, the number of palmitoylated LNA monomers and their positioning greatly affected ON potency. In addition, we performed RNA sequencing analysis, which showed that the anti-gene ONs affect the "immune system process, mRNA processing, and neurogenesis." Furthermore, we observed that for repeat containing genes, there is a higher tendency for antisense off-targeting. Taken together, our findings provide an optimized design of anti-gene ONs that could potentially be developed as DNA-targeting therapeutics for this class of TNR-related diseases.


Asunto(s)
Enfermedad de Huntington , Oligonucleótidos , Masculino , Humanos , Oligonucleótidos/genética , Oligonucleótidos/farmacología , Oligonucleótidos/química , Oligonucleótidos Antisentido/farmacología , ADN/uso terapéutico , Expresión Génica , ARN Mensajero/metabolismo , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia
17.
Blood Adv ; 7(9): 1929-1943, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36287227

RESUMEN

Covalent inhibitors of Bruton tyrosine kinase (BTK) have transformed the therapy of chronic lymphocytic leukemia (CLL), but continuous therapy has been complicated by the development of resistance. The most common resistance mechanism in patients whose disease progresses on covalent BTK inhibitors (BTKis) is a mutation in the BTK 481 cysteine residue to which the inhibitors bind covalently. Pirtobrutinib is a highly selective, noncovalent BTKi with substantial clinical activity in patients whose disease has progressed on covalent BTKi, regardless of BTK mutation status. Using in vitro ibrutinib-resistant models and cells from patients with CLL, we show that pirtobrutinib potently inhibits BTK-mediated functions including B-cell receptor (BCR) signaling, cell viability, and CCL3/CCL4 chemokine production in both BTK wild-type and C481S mutant CLL cells. We demonstrate that primary CLL cells from responding patients on the pirtobrutinib trial show reduced BCR signaling, cell survival, and CCL3/CCL4 chemokine secretion. At time of progression, these primary CLL cells show increasing resistance to pirtobrutinib in signaling inhibition, cell viability, and cytokine production. We employed longitudinal whole-exome sequencing on 2 patients whose disease progressed on pirtobrutinib and identified selection of alternative-site BTK mutations, providing clinical evidence that secondary BTK mutations lead to resistance to noncovalent BTKis.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Agammaglobulinemia Tirosina Quinasa , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Quimiocina CCL4/genética , Quimiocina CCL4/uso terapéutico , Resistencia a Antineoplásicos/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Mutación
18.
Nucleic Acid Ther ; 32(3): 221-233, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35238623

RESUMEN

2'-O-(N-(Aminoethyl)carbamoyl)methyl (2'-O-AECM)-modified oligonucleotides (ONs) and their mixmers with 2'-O-methyl oligonucleotides (2'-OMe ONs) with phosphodiester linkers as well as with partial and full phosphorothioate (PS) inclusion were synthesized and functionally evaluated as splice-switching oligonucleotides in several different reporter cell lines originating from different tissues. This was enabled by first preparing the AECM-modified A, C, G and U, which required a different strategy for each building block. The AECM modification has previously been shown to provide high resistance to enzymatic degradation, even without PS linkages. It is therefore particularly interesting and unprecedented that the 2'-O-AECM ONs are shown to have efficient splice-switching activity even without inclusion of PS linkages and found to be as effective as 2'-OMe PS ONs. Importantly, the PS linkages can be partially included, without any significant reduction in splice-switching efficacy. This suggests that AECM modification has the potential to be used in balancing the PS content of ONs. Furthermore, conjugation of 2'-O-AECM ONs to an endosomal escape peptide significantly increased splice-switching suggesting that this effect could possibly be due to an increase in uptake of ON to the site of action.


Asunto(s)
Oligonucleótidos Antisentido , Oligonucleótidos Fosforotioatos , Línea Celular , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/genética , Oligonucleótidos Fosforotioatos/química , Oligonucleótidos Fosforotioatos/genética
19.
Adv Healthc Mater ; 11(5): e2101658, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34773385

RESUMEN

Extracellular vesicles (EVs) are nanosized cell-derived vesicles produced by all cells, which provide a route of intercellular communication by transmitting biological cargo. While EVs offer promise as therapeutic agents, the molecular mechanisms of EV biogenesis are not yet fully elucidated, in part due to the concurrence of numerous interwoven pathways which give rise to heterogenous EV populations in vitro. The equilibrium between the EV-producing pathways is heavily influenced by factors in the extracellular environment, in such a way that can be taken advantage of to boost production of engineered EVs. In this study, a quantifiable EV-engineering approach is used to investigate how different cell media conditions alter EV production. The presence of serum, exogenous EVs, and other signaling factors in cell media alters EV production at the physical, molecular, and transcriptional levels. Further, it is demonstrated that the ceramide-dependent EV biogenesis route is the major pathway to production of engineered EVs during optimized EV-production. These findings suggest a novel understanding to the mechanisms underlying EV production in cell culture which can be applied to develop advanced EV production methods.


Asunto(s)
Vesículas Extracelulares , Comunicación Celular , Vesículas Extracelulares/metabolismo , Orgánulos , Transducción de Señal
20.
Leukemia ; 36(2): 476-481, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34564699

RESUMEN

We studied clinical and immunological outcome of Covid-19 in consecutive CLL patients from a well-defined area during month 1-13 of the pandemic. Sixty patients (median age 71 y, range 43-97) were identified. Median CIRS was eight (4-20). Patients had indolent CLL (n = 38), had completed (n = 12) or ongoing therapy (n = 10). Forty-six patients (77%) were hospitalized due to severe Covid-19 and 11 were admitted to ICU. Severe Covid-19 was equally distributed across subgroups irrespective of age, gender, BMI, CLL status except CIRS (p < 0.05). Fourteen patients (23%) died; age ≥75 y was the only significant risk factor (p < 0.05, multivariate analysis with limited power). Comparing month 1-6 vs 7-13 of the pandemic, deaths were numerically reduced from 32% to 18%, ICU admission from 37% to 15% whereas hospitalizations remained frequent (86% vs 71%). Seroconversion occurred in 33/40 patients (82%) and anti-SARS-CoV-2 antibodies were detectable at six and 12 months in 17/22 and 8/11 patients, respectively. Most (13/17) had neutralizing antibodies and 19/28 had antibodies in saliva. SARS-CoV-2-specific T-cells (ELISpot) were detected in 14/17 patients. Covid-19 continued to result in high admission even among consecutive and young early- stage CLL patients. A robust and durable B and/or T cell immunity was observed in most convalescents.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , COVID-19/complicaciones , Leucemia Linfocítica Crónica de Células B/inmunología , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , COVID-19/transmisión , COVID-19/virología , Terapia Combinada , Femenino , Estudios de Seguimiento , Humanos , Leucemia Linfocítica Crónica de Células B/terapia , Leucemia Linfocítica Crónica de Células B/virología , Masculino , Persona de Mediana Edad , Pronóstico , SARS-CoV-2/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA